Clarifai Guide
Clarifai Home
v7.0
v7.0
  • Welcome
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Personal Access Tokens
      • Scopes
      • Authorize
      • 2FA
    • Glossary
  • How-To
    • Portal
      • Auto Annotation
      • Custom Models
      • Text Classification
      • Visual Text Recognition
    • API
      • Auto Annotation
      • Batch Predict CSV on Custom Text Model
      • Custom KNN Face Classifier Workflow
      • Custom Models
      • Custom Text Model
      • Visual Text Recognition
  • API Guide
    • API overview
      • API Clients
      • Using Postman with Clarifai APIs
      • Status Codes
      • Pagination
      • Patching
    • Data Mode
      • Supported Formats
      • Create, Get, Update, Delete
      • Collectors
    • Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Scribe Label
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Enlight Train
      • Clarifai Models
      • Model Types
      • Create, Get, Update, Delete
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Create, Get, Update, Delete
      • Input Nodes
      • Workflow Predict
    • Armada Predict
      • Images
      • Video
      • Prediction Parameters
      • Multilingual Classification
    • Spacetime Search
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
  • Portal Guide
    • Portal Overview
    • Data Mode
      • Supported Formats
      • Bulk Labeling
      • CSV and TSV
      • Collectors
    • Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Scribe Label
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Enlight Train
      • Training Basics
      • Clarifai Models
      • Model Types
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Setting Up a Mesh Workflow
      • Input Nodes
    • Armada Predict
    • Spacetime Search
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
Powered by GitBook
On this page
  • Create a new application
  • Add images
  • Wait for upload & map IDs to URLs
  • List the annotations
  • Post new annotations
  • Create a KNN model
  • Create a workflow
  • Predict

Was this helpful?

  1. How-To
  2. API

Custom KNN Face Classifier Workflow

Use facial recognition to identify individual people.

PreviousBatch Predict CSV on Custom Text ModelNextCustom Models

Last updated 4 years ago

Was this helpful?

Let's say you want to build a face recognition system that is able to differentiate between persons of whom you only have a few samples (per person). Machine learning models generally require a large inputs dataset to be able to classify the inputs well.

When a large dataset is the luxury you do not have, we recommend using our KNN Classifier Model which uses K nearest neighbor search and plurality voting amongst the nearest neighbors to classify new instances. It's recommended when you only have a small dataset like one input per concept.

In this walkthorugh, you'll learn how to create a KNN classifier that's going to work based off the Clarifai's base Face model. The whole process below is going to be done programmatically, using the Clarifai's powerful API.

Note: Each of the steps below can also be done manually on .

Create a new application

The first step is manual: in the Clarifai Portal, with Face selected as the Base Workflow.

Afterward, copy the newly-created application's API key and set it as metadata (see the initialization code). This variable is going to be used, for authorization purposes, by all Clarifai API calls that follow.

Add images

Add images that contain the faces you want to use as a training set.

Since the application's base model is Face, after adding an image, faces are automatically located and are available to be annotated.

import time

# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

# Insert here the URLs of the images
image_urls = [
    "{YOUR_IMAGE_URL_1}",
    "{YOUR_IMAGE_URL_2}"
]
post_inputs_response = stub.PostInputs(
    service_pb2.PostInputsRequest(
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(url=url)
                )
            )
            for url in image_urls
        ]
    ),
    metadata=metadata
)


if post_inputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Failed response, status: " + str(post_inputs_response.status))

Wait for upload & map IDs to URLs

Now we'll wait for all the images to finish uploading, and then create a dictionary mapping from an input ID to the URL. This will help us to annotate the proper image in the next step.

while True:
    list_inputs_response = stub.ListInputs(
        service_pb2.ListInputsRequest(page=1, per_page=100),
        metadata=metadata
    )

    if list_inputs_response.status.code != status_code_pb2.SUCCESS:
        raise Exception("Failed response, status: " + str(list_inputs_response.status))

    for the_input in list_inputs_response.inputs:
        input_status_code = the_input.status.code
        if input_status_code == status_code_pb2.INPUT_DOWNLOAD_SUCCESS:
            continue
        elif input_status_code in (status_code_pb2.INPUT_DOWNLOAD_PENDING, status_code_pb2.INPUT_DOWNLOAD_IN_PROGRESS):
            print("Not all inputs have been downloaded yet. Checking again shortly.")
            break
        else:
            error_message = (
                    str(input_status_code) + " " +
                    the_input.status.description + " " +
                    the_input.status.details
            )
            raise Exception(
                f"Expected inputs to download, but got {error_message}. Full response: {list_inputs_response}"
            )
    else:
        # Once all inputs have been successfully downloaded, break the while True loop.
        print("All inputs have been successfully downloaded.")
        break
    time.sleep(2)


input_id_to_url = {inp.id: inp.data.image.url for inp in list_inputs_response.inputs}

List the annotations

Let's now print all the regions that the Face base model detected on our images.

The code below prints the annotations together with the input ID and region ID. These two IDs will be needed in the next step to annotate using our custom concepts. We'll also need the base Face model ID which is the one where model_version_id equals to embedding_model_version_id.

list_annotations_response = stub.ListAnnotations(
    service_pb2.ListAnnotationsRequest(list_all_annotations=True, page=1, per_page=100),
    metadata=metadata
)

if list_annotations_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Failed response, status: " + str(list_annotations_response.status))


for annotation in list_annotations_response.annotations:
    if not annotation.data or not annotation.data.regions:
        continue
    # Display results only for the base Face model.
    if annotation.model_version_id != annotation.embed_model_version_id:
        continue
    for region in annotation.data.regions:
        bbox = region.region_info.bounding_box
        print(f"Face was detected on input ID {annotation.input_id} (URL: {input_id_to_url[annotation.input_id]})")
        print(f"\tRegion ID: {region.id}")
        print(f"\tRegion location: left={bbox.left_col:.4f}, top={bbox.top_row:.4f}, right={bbox.right_col:.4f}, bottom={bbox.bottom_row:.4f}")
        print(f"\tConfidence: {region.value:.2f}")
        print(f"\tBase Face model version ID: {annotation.embed_model_version_id}")
        print()

Post new annotations

Let's use the above information to add annotations, in the form of a concept, to the detected face regions.

Input below the IDs from the previous call, and choose your concept ID and name that you want to annotate the region with (you may want to use e.g. person's name).

post_annotations_response = stub.PostAnnotations(
    service_pb2.PostAnnotationsRequest(
        annotations=[
            resources_pb2.Annotation(
                input_id="{MY_INPUT_ID}",
                embed_model_version_id="{MY_EMBED_MODEL_VERSION_ID}",
                data=resources_pb2.Data(
                    regions=[
                        resources_pb2.Region(
                            id="{MY_REGION_ID}",
                            data=resources_pb2.Data(
                                concepts=[
                                    resources_pb2.Concept(
                                        id="{MY_CONCEPT_ID}",
                                        name="{MY_CONCEPT_NAME}",
                                        value=1
                                    )
                                ]
                            )
                        )
                    ]
                )

            )
        ],
    ),
    metadata=metadata
)

if post_annotations_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Failed response, status: " + str(post_annotations_response.status))

Create a KNN model

Let's now create a KNN model using the concept IDs that were added above. The model type ID should be set to knn-concept.

post_models_response = stub.PostModels(
    service_pb2.PostModelsRequest(
        models=[
            resources_pb2.Model(
                id="my-knn-face-classifier-model",
                model_type_id="knn-concept",
                output_info=resources_pb2.OutputInfo(
                    data=resources_pb2.Data(
                        concepts=[
                            resources_pb2.Concept(id="{MY_CONCEPT_ID_1}"),
                            resources_pb2.Concept(id="{MY_CONCEPT_ID_2}"),
                        ]
                    )
                )
            )
        ]
    ),
    metadata=metadata
)

if post_models_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Failed response, status: " + str(post_models_response.status))

Create a workflow

One last step before being able to do predictions: create a workflow that's going to map from the base Face model to our custom KNN model.

post_workflows_response = stub.PostWorkflows(
    service_pb2.PostWorkflowsRequest(
        workflows=[
            resources_pb2.Workflow(
                id="detect-knn-workflow",
                nodes=[
                    resources_pb2.WorkflowNode(
                        id="face-v1.3-embed",
                        model=resources_pb2.Model(
                            id="d02b4508df58432fbb84e800597b8959",  # This is the base Face model ID.
                            model_version=resources_pb2.ModelVersion(
                                id="{EMBEDDING_MODEL_VERSION_ID}"  # This is the base Face model version ID.
                            )
                        )
                    ),
                    resources_pb2.WorkflowNode(
                        id="knn-classifier",
                        model=resources_pb2.Model(
                            id="my-knn-face-classifier-model",
                            model_version=resources_pb2.ModelVersion(
                                id="{YOUR_MODEL_VERSION_ID}"
                            )
                        )
                    ),
                ]
            )
        ]
    ),
    metadata=metadata
)

if post_workflows_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Failed response, status: " + str(post_workflows_response.status))

Predict

We're going to run a prediction on the workflow created above.

post_workflow_results_response = stub.PostWorkflowResults(
    service_pb2.PostWorkflowResultsRequest(
        workflow_id="detect-knn-workflow",
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="{MY_URL_TO_PREDICT_FACES_ON}"
                    )
                )
            )
        ]
    ),
    metadata=metadata
)

# We get back one result per input. Since there's one input above, one input was returned.
result = post_workflow_results_response.results[0]

for output in result.outputs:
    # At this point, two outputs will be returned: one for the base Face model, and the other for our custom model.
    # At this moment, we are only interested in the results of the latter model (if you want, you may also see the
    # half-baked results of the base Face model, which is not a list of concepts, but an embedding vector).
    if output.model.id != "my-knn-face-classifier-model":
        continue
    print(f"The prediction of the model ID `{output.model.id}` is:")
    for concept in output.data.concepts:
        print(f"\t{concept.name} (id: {concept.id}): {concept.value:.4f}")
the Clarifai Portal
create an new application