Clarifai Guide
Clarifai Home
v7.0
v7.0
  • Welcome
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Personal Access Tokens
      • Scopes
      • Authorize
      • 2FA
    • Glossary
  • How-To
    • Portal
      • Auto Annotation
      • Custom Models
      • Text Classification
      • Visual Text Recognition
    • API
      • Auto Annotation
      • Batch Predict CSV on Custom Text Model
      • Custom KNN Face Classifier Workflow
      • Custom Models
      • Custom Text Model
      • Visual Text Recognition
  • API Guide
    • API overview
      • API Clients
      • Using Postman with Clarifai APIs
      • Status Codes
      • Pagination
      • Patching
    • Data Mode
      • Supported Formats
      • Create, Get, Update, Delete
      • Collectors
    • Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Scribe Label
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Enlight Train
      • Clarifai Models
      • Model Types
      • Create, Get, Update, Delete
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Create, Get, Update, Delete
      • Input Nodes
      • Workflow Predict
    • Armada Predict
      • Images
      • Video
      • Prediction Parameters
      • Multilingual Classification
    • Spacetime Search
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
  • Portal Guide
    • Portal Overview
    • Data Mode
      • Supported Formats
      • Bulk Labeling
      • CSV and TSV
      • Collectors
    • Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Scribe Label
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Enlight Train
      • Training Basics
      • Clarifai Models
      • Model Types
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Setting Up a Mesh Workflow
      • Input Nodes
    • Armada Predict
    • Spacetime Search
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
Powered by GitBook
On this page
  • Example Predict API Request
  • Example Search By Tag API Request

Was this helpful?

  1. API Guide
  2. Armada Predict

Multilingual Classification

Multilingual predictions.

PreviousPrediction ParametersNextSpacetime Search

Last updated 4 years ago

Was this helpful?

The Clarifai API supports . When making a , you can pass in the language you would like the concepts returned in. When you create a new Application, you must specify a default language which will be the language of the returned concepts if not specified in the predict request.

Example Predict API Request

You can predict concepts in a language other then the Application's default, by explicitly passing in the language. Here is how you predict concepts in Chinese:

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("aaa03c23b3724a16a56b629203edc62c")  // This is model ID of the publicly available General model.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .setModel(
            Model.newBuilder().setOutputInfo(
                OutputInfo.newBuilder().setOutputConfig(
                    OutputConfig.newBuilder().setLanguage("zh")  // Chinese
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelOutputs(
    {
        model_id: "aaa03c23b3724a16a56b629203edc62c",
        inputs: [
            {data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
        ],
        model: {output_info: {output_config: {language: "zh"}}}
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="aaa03c23b3724a16a56b629203edc62c",  # This is model ID of the publicly available General model.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="https://samples.clarifai.com/metro-north.jpg"
                    )
                )
            )
        ],
        model=resources_pb2.Model(
            output_info=resources_pb2.OutputInfo(
                output_config=resources_pb2.OutputConfig(
                    language="zh"  # Chinese
                )
            )
        )
    ),
    metadata=metadata
)

if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("\t%s %.2f" % (concept.name, concept.value))
app.models.predict(Clarifai.GENERAL_MODEL, "https://samples.clarifai.com/metro-north.jpg", {language: 'zh'}).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

m = app.models.get('general-v1.3')

# predict labels in simplified Chinese
m.predict_by_url('https://samples.clarifai.com/metro-north.jpg', lang='zh')

# predict labels in Japanese
m.predict_by_url('https://samples.clarifai.com/metro-north.jpg', lang='ja')
client.predict(client.getDefaultModels().generalModel().id())
    .withInputs(ClarifaiInput.forImage("https://samples.clarifai.com/metro-north.jpg"))
    .withLanguage("zh")
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.Predict<Concept>(
                    client.PublicModels.GeneralModel.ModelID,
                    input: new ClarifaiURLImage("https://samples.clarifai.com/metro-north.jpg"),
                    language: "zh")
                .ExecuteAsync();
        }
    }
}
// first get the general model.
[app getModelByName:@"general-v1.3" completion:^(ClarifaiModel *model, NSError *error) {
  // create input to predict on.
  ClarifaiImage *input = [[ClarifaiImage alloc] initWithURL:@"https://samples.clarifai.com/metro-north.jpg"];

  // predict with the general model in Chinese.
  [model predictOnImages:@[input] withLanguage:@"zh" completion:^(NSArray<ClarifaiOutput *> *outputs, NSError *error) {
    for (ClarifaiConcept *concept in outputs[0].concepts) {
      NSLog(@"tag: %@", concept.conceptName);
      NSLog(@"probability: %f", concept.score);
    }
  }];
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Models\ModelType;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient();

$response = $client->predict(ModelType::concept(),
        $client->publicModels()->generalModel()->modelID(),
        new ClarifaiURLImage('https://samples.clarifai.com/metro-north.jpg'))
    ->withLanguage('zh')
    ->executeSync();

if ($response-> isSuccessful()) {
    $output = $response->get();

    echo "Predicted concepts:\n";

    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
  "inputs": [
    {
      "data": {
        "image": {
          "url": "https://samples.clarifai.com/metro-north.jpg"
        }
      }
    }
  ],
  "model":{
    "output_info":{
      "output_config":{
        "language":"zh"
      }
    }
  }
}'\
  https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/outputs

# Above is model ID of the publicly available General model.
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "b9f3c12f1534440fa984dc463e491780",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2017-01-31T20:59:27Z",
      "model": {
        "name": "general-v1.3",
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "created_at": "2016-03-09T17:11:39Z",
        "app_id": null,
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T01:19:12Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "b9f3c12f1534440fa984dc463e491780",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "铁路列车",
            "app_id": null,
            "value": 0.9989112
          },
          {
            "id": "ai_fvlBqXZR",
            "name": "铁路",
            "app_id": null,
            "value": 0.9975532
          },
          {
            "id": "ai_Xxjc3MhT",
            "name": "运输系统",
            "app_id": null,
            "value": 0.9959158
          },
          {
            "id": "ai_6kTjGfF6",
            "name": "站",
            "app_id": null,
            "value": 0.992573
          },
          {
            "id": "ai_RRXLczch",
            "name": "火车",
            "app_id": null,
            "value": 0.992556
          },
          {
            "id": "ai_VRmbGVWh",
            "name": "旅游",
            "app_id": null,
            "value": 0.98789215
          },
          {
            "id": "ai_SHNDcmJ3",
            "name": "地铁",
            "app_id": null,
            "value": 0.9816359
          },
          {
            "id": "ai_jlb9q33b",
            "name": "通勤",
            "app_id": null,
            "value": 0.9712483
          },
          {
            "id": "ai_46lGZ4Gm",
            "name": "铁路",
            "app_id": null,
            "value": 0.9690325
          },
          {
            "id": "ai_tr0MBp64",
            "name": "交通",
            "app_id": null,
            "value": 0.9687052
          },
          {
            "id": "ai_l4WckcJN",
            "name": "模煳",
            "app_id": null,
            "value": 0.9667078
          },
          {
            "id": "ai_2gkfMDsM",
            "name": "平台",
            "app_id": null,
            "value": 0.9624243
          },
          {
            "id": "ai_CpFBRWzD",
            "name": "城市的",
            "app_id": null,
            "value": 0.960752
          },
          {
            "id": "ai_786Zr311",
            "name": "沒有人",
            "app_id": null,
            "value": 0.95864904
          },
          {
            "id": "ai_6lhccv44",
            "name": "商业",
            "app_id": null,
            "value": 0.95720303
          },
          {
            "id": "ai_971KsJkn",
            "name": "跑道",
            "app_id": null,
            "value": 0.9494642
          },
          {
            "id": "ai_WBQfVV0p",
            "name": "城市",
            "app_id": null,
            "value": 0.94089437
          },
          {
            "id": "ai_dSCKh8xv",
            "name": "快速的",
            "app_id": null,
            "value": 0.9399334
          },
          {
            "id": "ai_TZ3C79C6",
            "name": "马路",
            "app_id": null,
            "value": 0.93121606
          },
          {
            "id": "ai_VSVscs9k",
            "name": "终点站",
            "app_id": null,
            "value": 0.9230834
          }
        ]
      }
    }
  ]
}

Example Search By Tag API Request

You can search for concepts in other languages even if the default language of your application is English. When you add inputs to your application, concepts are predicted for every language. Here is an example of searching for '人' which is simplified Chinese for 'people'.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiConceptResponse postConceptsSearchesResponse = stub.postConceptsSearches(
    PostConceptsSearchesRequest.newBuilder()
        .setConceptQuery(
            ConceptQuery.newBuilder()
                .setName("人")
                .setLanguage("zh")
        )
        .build()
);

if (postConceptsSearchesResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post concepts searches failed, status: " + postConceptsSearchesResponse.getStatus());
}

System.out.println("Found concepts:");
for (Concept concept : postConceptsSearchesResponse.getConceptsList()) {
    System.out.printf("\t%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostConceptsSearches(
    {
        concept_query: {name: "人", language: "zh"}
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post concepts searches failed, status: " + response.status.description);
        }

        console.log("Found concepts:");
        for (const concept of response.concepts) {
            console.log("\t" + concept.name + " " + concept.value);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_concepts_searches_response = stub.PostConceptsSearches(
    service_pb2.PostConceptsSearchesRequest(
        concept_query=resources_pb2.ConceptQuery(
            name="人",
            language="zh"
        )
    ),
    metadata=metadata
)

if post_concepts_searches_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post concepts searches failed, status: " + post_concepts_searches_response.status.description)

print("Found concepts:")
for concept in post_concepts_searches_response.concepts:
    print("\t%s %.2f" % (concept.name, concept.value))
app.inputs.search({
  concept: {
    name: '人'
  },
  language: 'ja'
}).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp

app = ClarifaiApp(api_key='YOUR_API_KEY')

# search '人' in simplified Chinese
app.inputs.search_by_predicted_concepts(u'人', lang='zh')
client.searchInputs(
    SearchClause.matchImageURL(ClarifaiImage.of("https://samples.clarifai.com/metro-north.jpg")))
    .withLanguage("zh")
    .getPage(1)
    .executeSync();
using System.Collections.Generic;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.SearchInputs(
                    new List<SearchBy>
                    {
                        SearchBy.ImageURL("https://samples.clarifai.com/metro-north.jpg")
                    },
                    language: "zh")
                .Page(1)
                .ExecuteAsync();
        }
    }
}
// create search term with concept you want to search predicted inputs with.
ClarifaiConcept *concept1 = [[ClarifaiConcept alloc] initWithConceptName:@"人"];
ClarifaiSearchTerm *searchTerm = [[ClarifaiSearchTerm alloc] initWithSearchItem:concept1 isInput:NO];

// search will find inputs predicted to be associated with the given concept.
[_app search:@[searchTerm] page:@1 perPage:@20 language:@"zh" completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
  for (ClarifaiSearchResult *result in results) {
    NSLog(@"image url: %@", result.mediaURL);
    NSLog(@"probability: %f", [result.score floatValue]);
  }
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;

$client = new ClarifaiClient();

$response = $client->searchInputs(
        SearchBy::imageURL('https://samples.clarifai.com/metro-north.jpg'))
    ->withLanguage('zh')
    ->executeSync();

if ($response-> isSuccessful()) {
    echo "Response is successful.\n";

    /** @var SearchInputsResult $result */
    $result = $response->get();
    foreach ($result->searchHits() as $searchHit) {
        echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "query": {
      "ands": [
        {
          "output": {
            "data": {
              "concepts": [
                {
                  "name": "人"
                }
              ]
            }
          }
        }
      ],
      "language": "zh"
    }
  }'\
  https://api.clarifai.com/v2/searches
many languages in addition to English
predict api request