Clarifai Guide
Clarifai Home
v7.0
v7.0
  • Welcome
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Personal Access Tokens
      • Scopes
      • Authorize
      • 2FA
    • Glossary
  • How-To
    • Portal
      • Auto Annotation
      • Custom Models
      • Text Classification
      • Visual Text Recognition
    • API
      • Auto Annotation
      • Batch Predict CSV on Custom Text Model
      • Custom KNN Face Classifier Workflow
      • Custom Models
      • Custom Text Model
      • Visual Text Recognition
  • API Guide
    • API overview
      • API Clients
      • Using Postman with Clarifai APIs
      • Status Codes
      • Pagination
      • Patching
    • Data Mode
      • Supported Formats
      • Create, Get, Update, Delete
      • Collectors
    • Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Scribe Label
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Enlight Train
      • Clarifai Models
      • Model Types
      • Create, Get, Update, Delete
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Create, Get, Update, Delete
      • Input Nodes
      • Workflow Predict
    • Armada Predict
      • Images
      • Video
      • Prediction Parameters
      • Multilingual Classification
    • Spacetime Search
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
  • Portal Guide
    • Portal Overview
    • Data Mode
      • Supported Formats
      • Bulk Labeling
      • CSV and TSV
      • Collectors
    • Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Scribe Label
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Enlight Train
      • Training Basics
      • Clarifai Models
      • Model Types
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Setting Up a Mesh Workflow
      • Input Nodes
    • Armada Predict
    • Spacetime Search
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
Powered by GitBook
On this page

Was this helpful?

  1. API Guide
  2. Spacetime Search

Combine or Negate

You can also combine searches. Unlike our legacy search, in annotation search, Filter and Rank is a list of Annotation objects. Filtered annotations will be ANDed. When you combine both Filter and Rank, filter will be applied before ranking annotations. This is important because limiting the result set on large applications can speedup the overall query drastically when doing a ranking.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

// Here we search for images which we labeled with "cat" and for which the General prediction model does not find
// a "dog" concept.
MultiSearchResponse postAnnotationsSearchesResponse = stub.postAnnotationsSearches(
    PostAnnotationsSearchesRequest.newBuilder().addSearches(
        Search.newBuilder().setQuery(
            Query.newBuilder()
                .addFilters(
                    Filter.newBuilder().setAnnotation(
                        Annotation.newBuilder().setData(
                                Data.newBuilder().addConcepts(  // You can search by multiple concepts.
                                Concept.newBuilder()
                                    .setId("cat")  // You could search by concept Name as well.
                                    .setValue(1f)  // Value of 0 will search for images that don't have the concept.
                            )
                        )
                    )
                )
                .addRanks(
                Rank.newBuilder().setAnnotation(
                    Annotation.newBuilder().setData(
                            Data.newBuilder().addConcepts(  // You can search by multiple concepts.
                            Concept.newBuilder()
                                .setId("dog")  // You could search by concept Name as well.
                                .setValue(1f)  // Value of 0 will search for images that don't have the concept.
                        )
                    )
                )
            )
        )    
    )
    .build()
);

if (postAnnotationsSearchesResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post annotations searches failed, status: " + postAnnotationsSearchesResponse.getStatus());
}

System.out.println("Found inputs " + postAnnotationsSearchesResponse.getHitsCount() + ":");
for (Hit hit : postAnnotationsSearchesResponse.getHitsList()) {
    System.out.printf("\tScore %.2f for annotation % of input %s\n", hit.getScore(), hit.getAnnotation().getId(), hit.getInput().getId())
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

// Here we search for images which we labeled with "cat" and for which the General prediction model does not find
// a "dog" concept.
stub.PostAnnotationsSearches(
    {
        searches: [
            {
                query: {
                    filters: [
                        {
                            annotation: {
                                data: {
                                    concepts: [  // You can search by multiple concepts.
                                        {
                                            id: "cat",  // You could search by concept Name as well.
                                            value: 1  // Value of 0 will search for images that don't have the concept
                                        }
                                    ]
                                }
                            }
                        }
                    ],
                    ranks: [
                        {
                            annotation: {
                                data: {
                                    concepts: [  // You can search by multiple concepts.
                                        {
                                            id: "dog",  // You could search by concept Name as well.
                                            value: 0  // Value of 0 will search for images that don't have the concept
                                        }
                                    ]
                                }
                            }
                        }
                    ]             
                }
            }
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post annotations searches failed, status: " + response.status.description);
        }

        console.log("Search result:");
        for (const hit of response.hits) {
            console.log("\tScore " + hit.score + " for annotation: " + hit.annotation.id + " of input: ", hit.input.id);
        }
    }
);
from clarifai_grpc.grpc.api import service_pb2, resources_pb2
from clarifai_grpc.grpc.api.status import status_code_pb2

# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

# Here we search for images which we labeled with "cat" and for which the General prediction model does not find
# a "dog" concept.
post_annotations_searches_response = stub.PostAnnotationsSearches(
    service_pb2.PostAnnotationsSearchesRequest(
        searches = [
            resources_pb2.Search(
                query=resources_pb2.Query(
                    filters=[
                        resources_pb2.Filter(
                            annotation=resources_pb2.Annotation(
                                data=resources_pb2.Data(
                                    concepts=[  # You can search by multiple concepts.
                                        resources_pb2.Concept(
                                            id="cat",  # You could search by concept Name as well.
                                            value=1  # Value of 0 will search for images that don't have the concept.
                                        )
                                    ]
                                )
                            )
                        )
                    ],
                    ranks=[
                        resources_pb2.Rank(
                            annotation=resources_pb2.Annotation(
                                data=resources_pb2.Data(
                                    concepts=[  # You can search by multiple concepts.
                                        resources_pb2.Concept(
                                            id="dog",  # You could search by concept Name as well.
                                            value=0  # Value of 0 will search for images that don't have the concept.
                                        )
                                    ]
                                )
                            )
                        )
                    ]
                )
            )
        ]
    ),
    metadata=metadata
)

if post_annotations_searches_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post searches failed, status: " + post_annotations_searches_response.status.description)

print("Search result:")
for hit in post_annotations_searches_response.hits:
    print("\tScore %.2f for annotation: %s off input: %s" % (hit.score, hit.annotation.id, hit.input.id))
# Here we search for images which we labeled with "cat" and for which the General prediction model does not find
# a "dog" concept.

curl -X POST \
  -H "Authorization: Key {api-key}" \
  -H "Content-Type: application/json" \
-d '
{
    "searches": [
      {
        "query": {
          "filters": [
            {
              "annotation": {
                "data": {
                  "concepts": [
                    {
                      "id":"people",
                      "value": 1
                    }
                  ]
                }
              }
            }
          ],
          "ranks": [
            {
              "annotation": {
                "data": {
                  "concepts": [
                    {
                      "id":"people",
                      "value": 1
                    }
                  ]
                }
              }
            }
          ]
        }
      }
    ]
}'\
https://api.clarifai.com/v2/searches
PreviousSearch OverviewNextFilter

Last updated 4 years ago

Was this helpful?