Clarifai Guide
Clarifai Home
v7.0
v7.0
  • Welcome
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Personal Access Tokens
      • Scopes
      • Authorize
      • 2FA
    • Glossary
  • How-To
    • Portal
      • Auto Annotation
      • Custom Models
      • Text Classification
      • Visual Text Recognition
    • API
      • Auto Annotation
      • Batch Predict CSV on Custom Text Model
      • Custom KNN Face Classifier Workflow
      • Custom Models
      • Custom Text Model
      • Visual Text Recognition
  • API Guide
    • API overview
      • API Clients
      • Using Postman with Clarifai APIs
      • Status Codes
      • Pagination
      • Patching
    • Data Mode
      • Supported Formats
      • Create, Get, Update, Delete
      • Collectors
    • Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Scribe Label
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Enlight Train
      • Clarifai Models
      • Model Types
      • Create, Get, Update, Delete
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Create, Get, Update, Delete
      • Input Nodes
      • Workflow Predict
    • Armada Predict
      • Images
      • Video
      • Prediction Parameters
      • Multilingual Classification
    • Spacetime Search
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
  • Portal Guide
    • Portal Overview
    • Data Mode
      • Supported Formats
      • Bulk Labeling
      • CSV and TSV
      • Collectors
    • Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Scribe Label
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Enlight Train
      • Training Basics
      • Clarifai Models
      • Model Types
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Setting Up a Mesh Workflow
      • Input Nodes
    • Armada Predict
    • Spacetime Search
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
Powered by GitBook
On this page
  • Create Model
  • Add Concepts To A Model
  • Remove Concepts From A Model
  • Update Model Name and Configuration
  • Get
  • List Model Types
  • Get Models
  • Get Model By Id
  • Get Model Output Info By Id
  • List Model Versions
  • Get Model Version By Id
  • Get Model Training Inputs
  • Get Model Training Inputs By Version
  • Delete A Model
  • Delete A Model Version
  • Delete All Models
  • Train A Model
  • Predict With A Model
  • Search Models By Name And Type

Was this helpful?

  1. API Guide
  2. Enlight Train

Create, Get, Update, Delete

Manage your model training jobs.

Create Model

To create a model, you need to specify the model's name and other required fields (which depend on the model). Specifying the ID is optional.

Below, we create a classifier model with one initial concept. You can always add and remove concepts later.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse postModelsResponse = stub.postModels(
    PostModelsRequest.newBuilder().addModels(
        Model.newBuilder()
            .setId("petsID")
            .setOutputInfo(
                OutputInfo.newBuilder().setData(
                    Data.newBuilder().addConcepts(Concept.newBuilder().setId("boscoe"))
                )
            )
    ).build()
);

if (postModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Post models failed, status: " + postModelsResponse.getStatus());
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModels(
    {
        models: [
            {
                id: "petsID",
                output_info: {
                    data: {concepts: [{id: "boscoe"}]},
                }
            }
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post models failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_models_response = stub.PostModels(
    service_pb2.PostModelsRequest(
        models=[
            resources_pb2.Model(
                id="petsID",
                output_info=resources_pb2.OutputInfo(
                    data=resources_pb2.Data(
                        concepts=[resources_pb2.Concept(id="boscoe", value=1)]
                    ),
                )
            )
        ]
    ),
    metadata=metadata
)

if post_models_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post models failed, status: " + post_models_response.status.description)
app.models.create(
  "petsID",
  [
    { "id": "boscoe" }
  ]
).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.create('petsID', concepts=['boscoe'])
client.createModel("petsID")
    .withOutputInfo(ConceptOutputInfo.forConcepts(
        Concept.forID("boscoe")
    ))
    .executeSync();
using System.Collections.Generic;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.CreateModel(
                    "petsID",
                    concepts: new List<Concept> {new Concept("boscoe")})
                .ExecuteAsync();
        }
    }
}
[_app createModel:@[@"cat", @"dog"] name:@"petsModel" modelID:@"petsID" conceptsMutuallyExclusive:NO closedEnvironment:NO completion:^(ClarifaiModel *model, NSError *error) {
    NSLog(@"model: %@", model);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->createModel('MODEL_ID')
    ->withConcepts([new Concept('CONCEPT1')])
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "model": {
      "id": "petsID",
      "output_info": {
        "data": {
          "concepts": [
            {
              "id": "boscoe",
              "value": 1
            }
          ]
        }
      }
    }
  }'\
  https://api.clarifai.com/v2/models

Add Concepts To A Model

You can add concepts to a model at any point. As you add concepts to inputs, you may want to add them to your model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

...

MultiModelResponse patchModelsResponse = stub.patchModels(
    PatchModelsRequest.newBuilder()
        .setAction("merge")  // Supported actions: overwrite, merge, remove
        .addModels(
            Model.newBuilder()
                .setId("petsID")
                .setOutputInfo(
                    OutputInfo.newBuilder().setData(
                        Data.newBuilder().addConcepts(Concept.newBuilder().setId("charlie"))
                    )
                )
        )
        .build()
);

if (patchModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Patch models failed, status: " + patchModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PatchModels(
    {
        action: "merge",  // Supported actions: overwrite, merge, remove
        models: [
            {
                id: "petsID",
                output_info: {data: {concepts: [{id: "charlie"}]}}
            }
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Patch models failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

patch_models_response = stub.PatchModels(
    service_pb2.PatchModelsRequest(
        action="merge",  # Supported actions: overwrite, merge, remove
        models=[
            resources_pb2.Model(
                id="petsID",
                output_info=resources_pb2.OutputInfo(
                    data=resources_pb2.Data(
                        concepts=[resources_pb2.Concept(id="charlie")]
                    ),
                )
            )
        ]
    ),
    metadata=metadata
)

if patch_models_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Patch models failed, status: " + patch_models_response.status.description)
app.models.initModel({model_id}).then(function(model) {
  updateModel,
  function(err) {
    // there was an error
  }
});

function updateModel(model) {
  model.mergeConcepts({"id": "charlie"}).then(
    function(response) {
      // do something with response
    },
    function(err) {
      // there was an error
    }
  );
}
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{model_id}')
model.add_concepts(['charlie'])
client.modifyModel("{{model_id}}")
    .withConcepts(Action.MERGE, Concept.forID("dogs"))
    .executeSync();

// Or, if you have a ConceptModel object, you can do it in an OO fashion
final ConceptModel model = client.getModelByID("{model_id}").executeSync().get().asConceptModel();
model.modify()
    .withConcepts(Action.MERGE, Concept.forID("dogs"))
    .executeSync();
using System.Collections.Generic;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.API.Requests.Models;
using Clarifai.DTOs.Models;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.ModifyModel(
                    "petsID",
                    ModifyAction.Merge,
                    concepts: new List<Concept> {new Concept("dogs")})
                .ExecuteAsync();

            // Or, if you have a ConceptModel object, you can do it in an OO fashion
            ConceptModel model = (ConceptModel) (
                await client.GetModel<Concept>("petsID")
                    .ExecuteAsync()).Get();
            await model.Modify(
                    ModifyAction.Merge,
                    concepts: new List<Concept> {new Concept("dogs")})
                .ExecuteAsync();
        }
    }
}
ClarifaiConcept *concept = [[ClarifaiConcept alloc] initWithConceptName:@"dress"];
[app addConcepts:@[concept] toModelWithID:@"{model_id}" completion:^(ClarifaiModel *model, NSError *error) {
    NSLog(@"model: %@", model);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ModifyAction;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->modifyModel('MODEL_ID')
    ->withModifyAction(ModifyAction::merge())
    ->withConcepts([new Concept('CONCEPT')])
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X PATCH \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "models": [
      {
        "id": "petsID",
        "output_info": {
          "data": {
            "concepts": [
              {
                "id": "charlie"
              }
            ]
          }
        }
      }
    ],
    "action": "merge"
  }'\
  https://api.clarifai.com/v2/models/

Remove Concepts From A Model

Conversely, if you'd like to remove concepts from a model, you can also do that.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse patchModelsResponse = stub.patchModels(
    PatchModelsRequest.newBuilder()
        .setAction("remove")  // Supported actions: overwrite, merge, remove
        .addModels(
            Model.newBuilder()
                .setId("petsID")
                .setOutputInfo(
                    OutputInfo.newBuilder().setData(
                        Data.newBuilder().addConcepts(Concept.newBuilder().setId("charlie"))
                    )
                )
        )
        .build()
);

if (patchModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Patch models failed, status: " + patchModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PatchModels(
    {
        action: "remove",  // Supported actions: overwrite, merge, remove
        models: [
            {
                id: "petsID",
                output_info: {data: {concepts: [{id: "charlie"}]}}
            }
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Patch models failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

patch_models_response = stub.PatchModels(
    service_pb2.PatchModelsRequest(
        action="remove",  # Supported actions: overwrite, merge, remove
        models=[
            resources_pb2.Model(
                id="petsID",
                output_info=resources_pb2.OutputInfo(
                    data=resources_pb2.Data(
                        concepts=[resources_pb2.Concept(id="charlie")]
                    ),
                )
            )
        ]
    ),
    metadata=metadata
)

if patch_models_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Patch models failed, status: " + patch_models_response.status.description)
app.models.initModel({model_id}).then(function(model) {
  updateModel,
  function(err) {
    // there was an error
  }
});

function updateModel(model) {
  model.deleteConcepts({"id": "charlie"}).then(
    function(response) {
      // do something with response
    },
    function(err) {
      // there was an error
    }
  );
}
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{model_id}')
model.delete_concepts(['charlie'])
client.modifyModel("{{model_id}}")
    .withConcepts(Action.REMOVE, Concept.forID("dogs"))
    .executeSync();

// Or, if you have a ConceptModel object, you can do it in an OO fashion
final ConceptModel model = client.getModelByID("{{model_id}}").executeSync().get().asConceptModel();
model.modify()
    .withConcepts(Action.REMOVE, Concept.forID("dogs"))
    .executeSync();
using System.Collections.Generic;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.API.Requests.Models;
using Clarifai.DTOs.Models;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.ModifyModel(
                    "petsID",
                    ModifyAction.Remove,
                    concepts: new List<Concept> {new Concept("dogs")})
                .ExecuteAsync();

// Or, if you have a ConceptModel object, you can do it in an OO fashion
            ConceptModel model = (ConceptModel) (
                    await client.GetModel<Concept>("petsID")
                        .ExecuteAsync())
                .Get();
            await model.Modify(
                    ModifyAction.Remove,
                    concepts: new List<Concept> {new Concept("dogs")})
                .ExecuteAsync();
        }
    }
}
ClarifaiConcept *concept = [[ClarifaiConcept alloc] initWithConceptName:@"dress"];
[app deleteConcepts:@[concept] fromModelWithID:@"{model_id}" completion:^(ClarifaiModel *model, NSError *error) {
    NSLog(@"model: %@", model);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ModifyAction;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->modifyModel('MODEL_ID')
    ->withModifyAction(ModifyAction::remove())
    ->withConcepts([new Concept('CONCEPT')])
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X PATCH \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "models": [
      {
        "id": "petsID",
        "output_info": {
          "data": {
            "concepts": [
              {
                "id": "charlie"
              }
            ]
          }
        }
      }
    ],
    "action": "remove"
  }'\
  https://api.clarifai.com/v2/models/

Update Model Name and Configuration

Here we will change the model name to 'newname' and the model's configuration to have concepts_mutually_exclusive=true and closed_environment=true.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse patchModelsResponse = stub.patchModels(
    PatchModelsRequest.newBuilder()
        .setAction("overwrite")
        .addModels(
            Model.newBuilder()
                .setId("petsID")
                .setName("newname")
                .setOutputInfo(
                    OutputInfo.newBuilder()
                        .setData(
                            Data.newBuilder()
                                .addConcepts(Concept.newBuilder().setId("birds"))
                                .addConcepts(Concept.newBuilder().setId("hurd"))
                        )
                        .setOutputConfig(
                            OutputConfig.newBuilder()
                                .setConceptsMutuallyExclusive(true)
                                .setClosedEnvironment(true)
                        )
                )
    ).build()
);

if (patchModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Patch models failed, status: " + patchModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PatchModels(
    {
        action: "overwrite",
        models: [
            {
                id: "petsID",
                name: "newname",
                output_info: {
                    data: {concepts: [{id: "birds"}, {id: "hurd"}]},
                    output_config: {concepts_mutually_exclusive: true, closed_environment: true}
                }
            }
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Patch models failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

patch_models_response = stub.PatchModels(
    service_pb2.PatchModelsRequest(
        action="overwrite",
        models=[
            resources_pb2.Model(
                id="petsID",
                name="newname",
                output_info=resources_pb2.OutputInfo(
                    data=resources_pb2.Data(
                        concepts=[
                            resources_pb2.Concept(id="birds"),
                            resources_pb2.Concept(id="hurd")
                        ]
                    ),
                    output_config=resources_pb2.OutputConfig(
                        concepts_mutually_exclusive=True,
                        closed_environment=True,
                    )
                )
            )
        ]
    ),
    metadata=metadata
)

if patch_models_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Patch models failed, status: " + patch_models_response.status.description)
app.models.initModel({model_id}).then(
  updateModel,
  function(err) {
    // there was an error
  }
);

function updateModel(model) {
  model.update({
    name: 'newname',
    conceptsMutuallyExclusive: true,
    closedEnvironment: true,
    concepts: ['birds', 'hurd']
  }).then(
}
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{model_id}')

# only update the name
model.update(model_name="newname")

# update the model attributes
model.update(concepts_mutually_exclusive=True, closed_environment=True)

# update more together
model.update(model_name="newname",
             concepts_mutually_exclusive=True, closed_environment=True)

# update attributes together with concepts
model.update(model_name="newname",
             concepts_mutually_exclusive=True,
             concepts=["birds", "hurd"])
client.modifyModel("{{model_id}}")
    .withName("newname")
    .withConceptsMutuallyExclusive(true)
    .withClosedEnvironment(true)
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.ModifyModel(
                    "someModel",
                    name: "{newName}",
                    areConceptsMutuallyExclusive: true,
                    isEnvironmentClosed: false)
                .ExecuteAsync();
        }
    }
}
[_app updateModel:@"{model_id}" name:@"newName" conceptsMutuallyExclusive:NO closedEnvironment:NO completion:^(ClarifaiModel *model, NSError *error) {
    NSLog(@"model: %@", model);
}];
use Clarifai\API\ClarifaiClient;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->modifyModel('MODEL_ID')
    ->withName('NEW_MODEL_NAME')
    ->withAreConceptsMutuallyExclusive(false)
    ->withIsEnvironmentClosed(false)
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X PATCH \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "models": [
      {
        "id": "petsID",
        "name": "newname",
        "output_info": {
          "data": {"concepts": [{"id": "birds"}, {"id": "hurd"}]},
          "output_config": {
            "concepts_mutually_exclusive": true,
            "closed_environment": true
          }
        }
      }
    ],
    "action": "overwrite"
  }'\
  https://api.clarifai.com/v2/models/

Get

List Model Types

Learn about available model types and their hyperparameters. This endpoint lists all the possible models that are creatable (when creatable=true), or in general in the platform (the others ones have creatable=false).

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelTypeResponse listModelTypesResponse = stub.listModelTypes(ListModelTypesRequest.newBuilder().build());

for (ModelType modelType : listModelTypesResponse.getModelTypesList()) {
    System.out.println(modelType);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.ListModelTypes(
    {
        page: 1,
        per_page: 500
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Received status: " + response.status.description + "\n" + response.status.details);
        }

        for (const model_type of response.model_types) {
            console.log(model_type)
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

response = stub.ListModelTypes(service_pb2.ListModelTypesRequest(), metadata=metadata)

for model_type in response.model_types:
  print(model_type)
curl -X GET 'https://api.clarifai.com/v2/models/types?per_page=20&page=1' \
    -H 'Authorization: Key YOUR_API_KEY'

Get Models

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse listModelsResponse = stub.listModels(
    ListModelsRequest.newBuilder().build()
);

if (listModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List models failed, status: " + listModelsResponse.getStatus());
}

List<Model> models = listModelsResponse.getModelsList();
for (Model model : models) {
    System.out.println(model);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.ListModels(
    {},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("List models failed, status: " + response.status.description);
        }

        for (const model of response.models) {
            console.log(JSON.stringify(model, null, 2));
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

list_models_response = stub.ListModels(
    service_pb2.ListModelsRequest(),
    metadata=metadata
)

if list_models_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("List models failed, status: " + list_models_response.status.description)

for model in list_models_response.models:
    print(model)
app.models.list().then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

# this is a generator
app.models.get_all()
client.getModels().getPage(1).executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.GetModels()
                .Page(1)
                .ExecuteAsync();
        }
    }
}
[_app getModels:1 resultsPerPage:30 completion:^(NSArray<ClarifaiModel *> *models, NSError *error) {
    NSLog(@"models: %@", models);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Models\Model;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->getModels()
    ->executeSync();

if ($response->isSuccessful()) {
    $models = $response->get();

    foreach ($models as $model) {
        echo $model->modelID() . ' ' . $model->type() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X GET \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models

Get Model By Id

All models have unique Ids. You can get a specific model by its id:

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse getModelResponse = stub.getModel(
    GetModelRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (getModelResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Get model failed, status: " + getModelResponse.getStatus());
}

Model model = getModelResponse.getModel();
System.out.println(model);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.GetModel(
    {model_id: "petsID"},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("List models failed, status: " + response.status.description);
        }

        const model = response.model;
        console.log(JSON.stringify(model, null, 2));
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

get_model_response = stub.GetModel(
    service_pb2.GetModelRequest(model_id="petsID"),
    metadata=metadata
)

if get_model_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Get model failed, status: " + get_model_response.status.description)

model = get_model_response.model
print(model)
app.models.get({model_id}).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

# get model by id
model = app.models.get(model_id')

# get model by name
model = app.models.get('my_model1')
client.getModelByID("{model_id}").executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            // Change Concept to whatever the model's type is.
            await client.GetModel<Concept>("{model_id}")
                .ExecuteAsync();
        }
    }
}
[_app getModel:@"model_id" completion:^(ClarifaiModel *model, NSError *error) {
    NSLog(@"model: %@", model);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Models\Model;
use Clarifai\DTOs\Models\ModelType;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->getModel(ModelType::concept(), 'MODEL_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    $model = $response->get();

    echo $model->modelID() . ' ' . $model->type() . "\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X GET \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID

Get Model Output Info By Id

The output info of a model lists what concepts it contains.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse getModelOutputInfoResponse = stub.getModelOutputInfo(
    GetModelRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (getModelOutputInfoResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Get model output info failed, status: " + getModelOutputInfoResponse.getStatus());
}

Model model = getModelOutputInfoResponse.getModel();
System.out.println(model);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.GetModelOutputInfo(
    {model_id: "petsID"},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("List models failed, status: " + response.status.description);
        }

        const model = response.model;
        console.log(JSON.stringify(model, null, 2));
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

get_model_response = stub.GetModelOutputInfo(
    service_pb2.GetModelRequest(model_id="petsID"),
    metadata=metadata
)

if get_model_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Get model failed, status: " + get_model_response.status.description)

model = get_model_response.model
print(model)
app.models.initModel({model_id}).then(
  getModelOutputInfo,
  handleError
);

function getModelOutputInfo(model) {
  model.getOutputInfo().then(
    function(response) {
      // do something with response
    },
    function(err) {
      // there was an error
    }
  );
}
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('my_model1')
model.get_info(verbose=True)
client.getModelByID("{model_id}").executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Models;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            var r = await client.GetModel<Concept>("{model-id}")
                .ExecuteAsync();
            var model = (ConceptModel) r.Get();
            var outputInfo = model.OutputInfo;
        }
    }
}
[_app getModelByID:@"{model_id}" completion:^(ClarifaiModel *model, NSError *error) {
    NSLog(@"model: %@", model);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Models\Model;
use Clarifai\DTOs\Models\ModelType;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->getModel(ModelType::concept(), 'MODEL_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var Model $model */
    $model = $response->get();

    $modelOutputInfo = $model->outputInfo();

    echo $modelOutputInfo->typeExt() . "\n";
    echo $modelOutputInfo->message() . "\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X GET \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID/output_info

List Model Versions

Every time you train a model, it creates a new version. You can list all the versions created.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelVersionResponse listModelVersionsResponse = stub.listModelVersions(
    ListModelVersionsRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (listModelVersionsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List model versions failed, status: " + listModelVersionsResponse.getStatus());
}

List<ModelVersion> modelVersions = listModelVersionsResponse.getModelVersionsList();
for (ModelVersion modelVersion : modelVersions) {
    System.out.println(modelVersion);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.ListModelVersions(
    {model_id: "petsID"},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("List model versions failed, status: " + response.status.description);
        }

        for (const model_version of response.model_versions) {
            console.log(JSON.stringify(model_version, null, 2));
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

list_model_versions_response = stub.ListModelVersions(
    service_pb2.ListModelVersionsRequest(
        model_id="petsID"
    ),
    metadata=metadata
)

if list_model_versions_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("List model versions failed, status: " + list_model_versions_response.status.description)

for model_version in list_model_versions_response.model_versions:
    print(model_version)
app.models.initModel('{id}').then(
  function(model) {
    model.getVersions().then(
      function(response) {
        // do something with response
      },
      function(err) {
        // there was an error
      }
    );
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{id}')
model.list_versions()
client.getModelVersions("{model_id}").getPage(1).executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.GetModelVersions("{model_id}")
                .ExecuteAsync();
        }
    }
}
[app listVersionsForModel:@"{model_id}" page:1 resultsPerPage:30 completion:^(NSArray<ClarifaiModelVersion *> *versions, NSError *error) {
    NSLog(@"versions: %@", versions);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Models\ModelVersion;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->getModelVersions('MODEL_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var ModelVersion[] $modelVersions */
    $modelVersions = $response->get();
    foreach ($modelVersions as $modelVersion) {
        echo $modelVersion->id() . ' ' . $modelVersion->modelTrainingStatus() . "\n";
    }

} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X GET \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID/versions

Get Model Version By Id

To get a specific model version, you must provide the model_id as well as the version_id. You can inspect the model version status to determine if your model is trained or still training.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions


SingleModelVersionResponse getModelVersionResponse = stub.getModelVersion(
    GetModelVersionRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")
        .build()
);

if (getModelVersionResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Get model version failed, status: " + getModelVersionResponse.getStatus());
}

ModelVersion modelVersion = getModelVersionResponse.getModelVersion();
System.out.println(modelVersion);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.GetModelVersion(
    {model_id: "petsID", version_id: "{YOUR_MODEL_VERSION_ID}"},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Get model version failed, status: " + response.status.description);
        }

        const model_version = response.model_version;
        console.log(JSON.stringify(model_version, null, 2));
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

get_model_version_response = stub.GetModelVersion(
    service_pb2.GetModelVersionRequest(
        model_id="petsID",
        version_id="{YOUR_MODEL_VERSION_ID}"
    ),
    metadata=metadata
)

if get_model_version_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Get model version failed, status: " + get_model_version_response.status.description)

model_version = get_model_version_response.model_version
print(model_version)
app.models.initModel('{id}').then(
  function(model) {
    model.getVersion('{version_id}').then(
      function(response) {
        // do something with response
      },
      function(err) {
        // there was an error
      }
    );
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{id}')
model.get_version('{version_id}')
client.getModelVersionByID("{model_id}", "{version_id}").executeSync();

// Or in a more object-oriented manner:
client.getModelByID("{model_id}")
    .executeSync().get() // Returns Model object
    .getVersionByID("{version_id}").executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.GetModelVersion("{model_id}", "{version_id}")
                .ExecuteAsync();
        }
    }
}
[app getVersionForModel:@"{model_id}" versionID:{version_id} completion:^(ClarifaiModelVersion *version, NSError *error) {
    NSLog(@"version: %@", version);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Models\ModelVersion;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->getModelVersion('MODEL_ID', 'MODEL_VERSION_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var ModelVersion $modelVersion */
    $modelVersion = $response->get();
    echo $modelVersion->id() . ' ' . $modelVersion->modelTrainingStatus() . "\n";

} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X GET \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID/versions/{YOUR_MODEL_VERSION_ID}

Get Model Training Inputs

You can list all the inputs that were used to train the model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiInputResponse listModelInputsResponse = stub.listModelInputs(
    ListModelInputsRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (listModelInputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List model inputs failed, status: " + listModelInputsResponse.getStatus());
}

List<Input> inputs = listModelInputsResponse.getInputsList();
for (Input input : inputs) {
    System.out.println(input);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.ListModelInputs(
    {model_id: "petsID"},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("List model inputs failed, status: " + response.status.description);
        }

        for (const input of response.inputs) {
            console.log(JSON.stringify(input, null, 2));
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

list_model_inputs_response = stub.ListModelInputs(
    service_pb2.ListModelInputsRequest(model_id="petsID"),
    metadata=metadata
)

if list_model_inputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("List model inputs failed, status: " + list_model_inputs_response.status.description)

for input_object in list_model_inputs_response.inputs:
    print(input_object)
app.models.initModel('{id}').then(
  function(model) {
    model.getInputs().then(
      function(response) {
        // do something with response
      },
      function(err) {
        // there was an error
      }
    );
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{id}')
model.get_inputs()
client.getModelInputs("{model_id}").getPage(1).executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.GetModelInputs("{model_id}")
                .Page(1)
                .ExecuteAsync();
        }
    }
}
[app listTrainingInputsForModel:@"{model_id}" page:1 resultsPerPage:30 completion:^(NSArray<ClarifaiInput *> *inputs, NSError *error) {
    NSLog(@"inputs: %@", inputs);
}];
// Coming soon
curl -X GET \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID/inputs

Get Model Training Inputs By Version

You can also list all the inputs that were used to train a specific model version.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiInputResponse listModelInputsResponse = stub.listModelInputs(
    ListModelInputsRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")
        .build()
);

if (listModelInputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List model inputs failed, status: " + listModelInputsResponse.getStatus());
}

List<Input> inputs = listModelInputsResponse.getInputsList();
for (Input input : inputs) {
    System.out.println(input);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.ListModelInputs(
    {
        model_id: "petsID",
        version_id: "{YOUR_MODEL_VERSION_ID}"
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("List model inputs failed, status: " + response.status.description);
        }

        for (const input of response.inputs) {
            console.log(JSON.stringify(input, null, 2));
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

list_model_inputs_response = stub.ListModelInputs(
    service_pb2.ListModelInputsRequest(
        model_id="petsID",
        version_id="{YOUR_MODEL_VERSION_ID}"
    ),
    metadata=metadata
)

if list_model_inputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("List model inputs failed, status: " + list_model_inputs_response.status.description)

for input_object in list_model_inputs_response.inputs:
    print(input_object)
app.models.initModel({id: '{model_id}', version: '{version_id}'}).then(
  function(model) {
    model.getInputs().then(
      function(response) {
        // do something with response
      },
      function(err) {
        // there was an error
      }
    );
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{id}')
model.get_inputs('{version_id}')
client.getModelInputs("{model_id}")
    .fromSpecificModelVersion("{version_id}")
    .getPage(1)
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.GetModelInputs("{model_id}", "{version_id}")
                .Page(1)
                .ExecuteAsync();
        }
    }
}
[_app listTrainingInputsForModel:@"{model_id}" page:1 resultsPerPage:30 completion:^(NSArray<ClarifaiInput *> *inputs, NSError *error) {
    NSLog(@"inputs: %@", inputs);
}];
// Coming soon
curl -X GET \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID/versions/{YOUR_MODEL_VERSION_ID}/inputs

Delete A Model

You can delete a model using the model_id.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

BaseResponse deleteModelResponse = stub.deleteModel(
    DeleteModelRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (deleteModelResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Delete model failed, status: " + deleteModelResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.DeleteModel(
    {model_id: "petsID"},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Delete model failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

delete_model_response = stub.DeleteModel(
    service_pb2.DeleteModelRequest(model_id="petsID"),
    metadata=metadata
)

if delete_model_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Delete model failed, status: " + delete_model_response.status.description)
app.models.delete('{id}').then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

app.models.delete('{id}')
client.deleteModel("{model_id}").executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.DeleteModel("{model_id}")
                .ExecuteAsync();
        }
    }
}
[app deleteModel:@"{model_id}" completion:^(NSError *error) {
    NSLog(@"model is deleted");
}];
use Clarifai\API\ClarifaiClient;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->deleteModel('MODEL_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X DELETE \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID

Delete A Model Version

You can also delete a specific version of a model with the model_id and version_id.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

BaseResponse deleteModelVersionResponse = stub.deleteModelVersion(
    DeleteModelVersionRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")
        .build()
);

if (deleteModelVersionResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Delete model version failed, status: " + deleteModelVersionResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.DeleteModelVersion(
    {
        model_id: "petsID",
        version_id: "{YOUR_MODEL_VERSION_ID}"
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Delete model version failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

delete_model_version_response = stub.DeleteModelVersion(
    service_pb2.DeleteModelVersionRequest(
        model_id="petsID",
        version_id="{YOUR_MODEL_VERSION_ID}"
    ),
    metadata=metadata
)

if delete_model_version_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Delete model version failed, status: " + delete_model_version_response.status.description)
app.models.delete('{model_id}', '{version_id}').then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

app.models.delete('{id}', '{version_id}')

# or

model = app.models.get('{id}')
model.delete_version('{version_id}')
client.deleteModelVersion("{model_id}", "{version_id}").executeSync();

// Or in a more object-oriented manner:
client.getModelByID("{model_id}")
    .executeSync().get() // Returns Model object
    .deleteVersion("{version_id}")
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.DeleteModelVersion("{model_id}", "{version_id}")
                .ExecuteAsync();

            // Or in a more object-oriented manner:
            var model = (await client.GetModel<Concept>("{model_id}")
                .ExecuteAsync()).Get();  // Returns a Model<Concept> object.
            await model.DeleteModelVersion("{version_id}").ExecuteAsync();
        }
    }
}
[app deleteVersionForModel:{model_id} versionID:{version_id} completion:^(NSError *error) {
    NSLog(@"model version deleted");
}];
use Clarifai\API\ClarifaiClient;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->deleteModelVersion('MODEL_ID', 'MODEL_VERSION_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X DELETE \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/petsID/versions/{YOUR_MODEL_VERSION_ID}

Delete All Models

If you would like to delete all models associated with an application, you can also do that. Please proceed with caution as these cannot be recovered.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

BaseResponse deleteModelsResponse = stub.deleteModels(
    DeleteModelsRequest.newBuilder()
        .setDeleteAll(true)
        .build()
);

if (deleteModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Delete models failed, status: " + deleteModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.DeleteModels(
    {delete_all: true},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Delete models failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

delete_models_response = stub.DeleteModels(
    service_pb2.DeleteModelsRequest(delete_all=True),
    metadata=metadata
)

if delete_models_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Delete models failed, status: " + delete_models_response.status.description)
app.models.delete().then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

app.models.delete_all()
client.deleteAllModels().executeSync();
using System.Threading.Tasks;
using Clarifai.API;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.DeleteAllModels()
                .ExecuteAsync();
        }
    }
}
[_app deleteAllModels:^(NSError *error) {
    NSLog(@"delete all models");
}];
use Clarifai\API\ClarifaiClient;
use ClarifaiIntTests\BaseIntTest;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->deleteAllModels()
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X DELETE \
  -H "Authorization: Key YOUR_API_KEY" \
  https://api.clarifai.com/v2/models/

Train A Model

When you train a model, you are telling the system to look at successfully indexed images with concepts you've provided and learn from them. This train operation is asynchronous. It may take a few seconds for your model to be fully trained and ready.

Note: you can repeat this operation as often as you like. By adding more images with concepts and training, you can get the model to predict exactly how you want it to.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse postModelVersionsResponse = stub.postModelVersions(
    PostModelVersionsRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (postModelVersionsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model versions failed, status: " + postModelVersionsResponse.getStatus());
}

String modelVersionId = postModelVersionsResponse.getModel().getModelVersion().getId();
System.out.println("New model version ID: " + modelVersionId);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelVersions(
    {model_id: "petsID"},
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model versions failed, status: " + response.status.description);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_versions = stub.PostModelVersions(
    service_pb2.PostModelVersionsRequest(
        model_id="petsID"
    ),
    metadata=metadata
)

if post_model_versions.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model versions failed, status: " + post_model_versions.status.description)
app.models.train("{model_id}").then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);

// or if you have an instance of a model

model.train().then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('{model_id}')
model.train()
client.trainModel("{model_id}").executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.TrainModel<Concept>("{model_id}")
                .ExecuteAsync();
        }
    }
}
ClarifaiImage *image = [[ClarifaiImage alloc] initWithURL:@"https://samples.clarifai.com/puppy.jpeg"]
[app getModel:@"{id}" completion:^(ClarifaiModel *model, NSError *error) {
    [model train:^(ClarifaiModel *model, NSError *error) {
        NSLog(@"model: %@", model);
    }];
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Models\ModelType;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->trainModel(ModelType::concept(), 'MODEL_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  https://api.clarifai.com/v2/models/petsID/versions

Predict With A Model

Once you have trained a model you are ready to use your new model to get predictions. The predictions returned will only contain the concepts that you told it to see.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")  // Optional. Defaults to the latest version.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelOutputs(
    {
        model_id: "petsID",
        version_id: "{YOUR_MODEL_VERSION_ID}",  // This is optional. Defaults to the latest model version.
        inputs: [
            {data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="petsID",
        version_id="{YOUR_MODEL_VERSION_ID}",  # This is optional. Defaults to the latest model version.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="https://samples.clarifai.com/metro-north.jpg"
                    )
                )
            )
        ]
    ),
    metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
app.models.predict("{model_id}", ["https://samples.clarifai.com/puppy.jpeg"]).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);

// or if you have an instance of a model

model.predict("https://samples.clarifai.com/puppy.jpeg").then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('YOUR_MODEL_ID')

response = model.predict_by_url('https://samples.clarifai.com/puppy.jpeg')
client.predict("{model_id}")
    .withInputs(
        ClarifaiInput.forImage("https://samples.clarifai.com/puppy.jpeg")
    )
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.Predict<Concept>(
                    "{model_id}",
                    new ClarifaiURLImage("https://samples.clarifai.com/puppy.jpeg"))
                .ExecuteAsync();
        }
    }
}
ClarifaiImage *image = [[ClarifaiImage alloc] initWithURL:@"https://samples.clarifai.com/puppy.jpeg"]
[app getModel:@"{model_id}" completion:^(ClarifaiModel *model, NSError *error) {
    [model predictOnImages:@[image]
                completion:^(NSArray<ClarifaiSearchResult *> *outputs, NSError *error) {
                    NSLog(@"outputs: %@", outputs);
                }];
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Models\ModelType;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->predict(ModelType::concept(), 'MODEL_ID',
        new ClarifaiURLImage('https://samples.clarifai.com/puppy.jpeg'))
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/puppy.jpeg"
          }
        }
      }
    ]
  }'\
  https://api.clarifai.com/v2/models/petsID/outputs

# Model version defaults to latest. If you want to specify the model version, use this URL:
# https://api.clarifai.com/v2/models/petsID/versions/{YOUR_MODEL_VERSION_ID}/outputs

Search Models By Name And Type

You can search all your models by name and type of model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse postModelsSearchesResponse = stub.postModelsSearches(
    PostModelsSearchesRequest.newBuilder()
        .setModelQuery(
            ModelQuery.newBuilder()
                .setName("gen*")
                .setType("concept")
        )
        .build()
);

if (postModelsSearchesResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Post models searches failed, status: " + postModelsSearchesResponse.getStatus());
}

List<Model> models = postModelsSearchesResponse.getModelsList();
for (Model model : models) {
    System.out.println(model);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelsSearches(
    {
        model_query: {
            name: "gen*",
            type: "concept"
        }
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model searches failed, status: " + response.status.description);
        }

        const models = response.models;
        for (const model of models) {
            console.log(JSON.stringify(model, null, 2));
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_models_searches_response = stub.PostModelsSearches(
    service_pb2.PostModelsSearchesRequest(
        model_query=resources_pb2.ModelQuery(
            name="gen*",
            type="concept"
        )
    ),
    metadata=metadata
)

if post_models_searches_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post models searches failed, status: " + post_models_searches_response.status.description)

for model in post_models_searches_response.models:
    print(model)
app.models.search('general-v1.3', 'concept').then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

# search model name
app.models.search('general-v1.3')

# search model name and type
app.models.search(model_name='general-v1.3', model_type='concept')
client.findModel()
    .withModelType(ModelType.CONCEPT)
    .withName("general-v1.3")
    .getPage(1)
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Models;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.SearchModels(
                    modelType: ModelType.Concept,
                    name: "general-v1.3")
                .ExecuteAsync();
        }
    }
}
[app searchForModelByName:@"general-v1.3" modelType:ClarifaiModelTypeConcept completion:^(NSArray<ClarifaiModel *> *models, NSError *error) {
    NSLog(@"models: %@", models);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Models\Model;
use Clarifai\DTOs\Models\ModelType;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->searchModels('general*', ModelType::concept())
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var Model[] $models */
    $models = $response->get();

    foreach ($models as $model) {
        echo $model->name() . ' ' . $model->type() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "model_query": {
      "name": "gen*",
      "type": "concept"
    }
  }'\
  https://api.clarifai.com/v2/models/searches
PreviousModel TypesNextDeep Training

Last updated 4 years ago

Was this helpful?

To get a list of all models including models you've created as well as :

Clarifai models