Clarifai Guide
Clarifai Home
v7.0
v7.0
  • Welcome
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Personal Access Tokens
      • Scopes
      • Authorize
      • 2FA
    • Glossary
  • How-To
    • Portal
      • Auto Annotation
      • Custom Models
      • Text Classification
      • Visual Text Recognition
    • API
      • Auto Annotation
      • Batch Predict CSV on Custom Text Model
      • Custom KNN Face Classifier Workflow
      • Custom Models
      • Custom Text Model
      • Visual Text Recognition
  • API Guide
    • API overview
      • API Clients
      • Using Postman with Clarifai APIs
      • Status Codes
      • Pagination
      • Patching
    • Data Mode
      • Supported Formats
      • Create, Get, Update, Delete
      • Collectors
    • Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Scribe Label
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Enlight Train
      • Clarifai Models
      • Model Types
      • Create, Get, Update, Delete
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Create, Get, Update, Delete
      • Input Nodes
      • Workflow Predict
    • Armada Predict
      • Images
      • Video
      • Prediction Parameters
      • Multilingual Classification
    • Spacetime Search
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
  • Portal Guide
    • Portal Overview
    • Data Mode
      • Supported Formats
      • Bulk Labeling
      • CSV and TSV
      • Collectors
    • Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Scribe Label
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Enlight Train
      • Training Basics
      • Clarifai Models
      • Model Types
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
        • Improving Your Model
    • Mesh Workflows
      • Base Workflows
      • Setting Up a Mesh Workflow
      • Input Nodes
    • Armada Predict
    • Spacetime Search
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
Powered by GitBook
On this page

Was this helpful?

  1. API Guide
  2. Spacetime Search
  3. Legacy Search

Combine or Negate

You can also combine searches using AND.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

// Here we search for images which we labeled with "cat" and for which the General prediction model does not find
// a "dog" concept.
MultiSearchResponse postSearchesResponse = stub.postSearches(
    PostSearchesRequest.newBuilder().setQuery(
        Query.newBuilder()
            .addAnds(
                And.newBuilder().setInput( // Setting Input indicates we search for images that have the concept(s)
                                           // which we added to the input manually.
                    Input.newBuilder().setData(
                        Data.newBuilder().addConcepts(
                            Concept.newBuilder()
                                .setName("cat")
                                .setValue(1f)
                        )
                    )
                )
            )
            .addAnds(
                And.newBuilder().setOutput(  // Setting Output indicates we search for images that have the concept(s)
                                             // which were predicted by the General model.
                    Output.newBuilder().setData(
                        Data.newBuilder().addConcepts(
                            Concept.newBuilder()
                                .setName("dog")
                                .setValue(0f)
                        )
                    )
                )
            )
    )
    .build()
);

if (postSearchesResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post searches failed, status: " + postSearchesResponse.getStatus());
}

System.out.println("Found inputs " + postSearchesResponse.getHitsCount() + ":");
for (Hit hit : postSearchesResponse.getHitsList()) {
    System.out.printf("\tScore %.2f for %s\n", hit.getScore(), hit.getInput().getId());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

// Here we search for images which we labeled with "cat" and for which the General prediction model does not find
// a "dog" concept.
stub.PostSearches(
    {
        query: {
            ands: [
                {
                    input: {  // Setting Input indicates we search for images that have the concept(s)
                              // which we added to the input manually.
                        data: {
                            concepts: [
                                {
                                    name: "cat",
                                    value: 1
                                }
                            ]
                        }
                    }
                },
                {
                    output: {  // Setting Output indicates we search for images that have the concept(s)
                               // which were predicted by the General model.
                        data: {
                            concepts: [
                                {
                                    name: "dog",
                                    value: 0
                                }
                            ]
                        }
                    }
                }
            ]
        }
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post searches failed, status: " + response.status.description);
        }

        console.log("Found inputs:");
        for (const hit of response.hits) {
            console.log("\tScore " + hit.score + " for " + hit.input.id);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

# Here we search for images which we labeled with "cat" and for which the General prediction model does not find
# a "dog" concept.
post_searches_response = stub.PostSearches(
    service_pb2.PostSearchesRequest(
        query=resources_pb2.Query(
            ands=[
                resources_pb2.And(
                    input=resources_pb2.Input(  # Setting Input indicates we search for images that have the concept(s)
                                                # which we added to the input manually.
                        data=resources_pb2.Data(
                            concepts=[
                                resources_pb2.Concept(
                                    name="cat",
                                    value=1
                                )
                            ]
                        )
                    )
                ),
                resources_pb2.And(
                    output=resources_pb2.Output(  # Setting Output indicates we search for images that have the concept(s)
                                                  # which were predicted by the General model.
                        data=resources_pb2.Data(
                            concepts=[
                                resources_pb2.Concept(
                                    name="dog",
                                    value=0
                                )
                            ]
                        )
                    )
                )
            ]
        )
    ),
    metadata=metadata
)

if post_searches_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post searches failed, status: " + post_searches_response.status.description)

print("Found inputs:")
for hit in post_searches_response.hits:
    print("\tScore %.2f for %s" % (hit.score, hit.input.id))
app.inputs.search([
  { input: { url: 'https://samples.clarifai.com/puppy.jpeg' } },
  { concept: { name: 'cat', type: 'input' } },
  { concept: { name: 'dog' } }
]).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp, InputSearchTerm, OutputSearchTerm, SearchQueryBuilder
app = ClarifaiApp(api_key='YOUR_API_KEY')

term1 = InputSearchTerm(concept='cat')
term2 = OutputSearchTerm(concept='dog', value=False)
term3 = OutputSearchTerm(url="https://samples.clarifai.com/metro-north.jpg")

query = SearchQueryBuilder()
query.add_term(term1)
query.add_term(term2)
query.add_term(term3)

app.inputs.search(query)
client.searchInputs()
    .ands(
        SearchClause.matchUserTaggedConcept(Concept.forName("cat")),
        SearchClause.matchConcept(Concept.forName("dog").withValue(false)),
        SearchClause.matchImageVisually(ClarifaiImage.of("https://samples.clarifai.com/metro-north.jpg"))
    )
    .getPage(1)
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.SearchInputs(
                    SearchBy.UserTaggedConceptName("cat"),
                    SearchBy.ConceptName("dog"),
                    SearchBy.ImageURL("https://samples.clarifai.com/metro-north.jpg"))
                .Page(1)
                .ExecuteAsync();
        }
    }
}
//Search for inputs that are predicted as "fast" and visually similar to the given image.
ClarifaiConcept *conceptFromGeneralModel = [[ClarifaiConcept alloc] initWithConceptName:@"fast"];
ClarifaiSearchTerm *term1 = [ClarifaiSearchTerm searchByPredictedConcept:conceptFromGeneralModel];

ClarifaiSearchTerm *term2 = [ClarifaiSearchTerm searchVisuallyWithImageURL:@"https://samples.clarifai.com/metro-north.jpg"];

[_app search:@[term1, term2] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
  // Print output of first search result.
  NSLog(@"inputID: %@", results[0].inputID);
  NSLog(@"URL: %@", results[0].mediaURL);
  NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->searchInputs([
        SearchBy::userTaggedConceptName('cat'),
        SearchBy::conceptName('dog'),
        SearchBy::imageURL('https://samples.clarifai.com/metro-north.jpg')
    ])
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var SearchInputsResult $result */
    $result = $response->get();

    foreach ($result->searchHits() as $searchHit) {
        echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
# Here we search for images which we labeled with "cat" and for which the General prediction model does not find
# a "dog" concept.

curl -X POST \
  -H "Authorization: Key {api-key}" \
  -H "Content-Type: application/json" \
-d '
{
    "query": {
        "ands": [
            {
                "input":{
                    "data": {
                        "concepts": [
                            {
                                "name": "cat",
                                "value": 1
                            }
                        ]
                    }
                }
            },
            {
                "output": {
                    "data": {
                        "concepts": [
                            {
                                "name": "dog",
                                "value": 0
                            }
                        ]
                    }
                }
            }
        ]
    }
}'\
https://api.clarifai.com/v2/searches
PreviousLegacy SearchNextFilter

Last updated 4 years ago

Was this helpful?