Auto Annotation
Use AI to help you build AI. Auto annotation uses your model predictions to label your training data.
This tutorial demonstrates how auto-annotation workflows can be configured in the Clarifai API. With auto-annotation, you can use model predictions to label your inputs. Auto-annotation can help you to prepare training data, or assign other useful labels and metadata to your inputs. Since models are doing most of the work of annotating your data, this enables you to speed-up and scale-up your annotation process while ensuring quality standards, typically reducing human effort of labelling data by orders of magnitude. And since this is built into our APIs it seamlessly integrates with all the search, training and prediction functionality of the Clarifai platform.
When a concept is predicted by a model, it is predicted with a confidence score between 0 and 1. In this walkthrough we will leverage that score in our workflow so that when your model predictions are confident (close to 1), you can have your data automatically labeled with that concept. When your predictions are less-than-confident, you can have your input sent to a human being for review.
Create Concepts
Create the concepts that we'll be using in our model. In this tutorial we'll create the following concepts: people
, man
and adult
.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_concepts_response = stub.PostConcepts(
service_pb2.PostConceptsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
concepts=[
resources_pb2.Concept(id="peopleID", name="people"),
resources_pb2.Concept(id="manID", name="man"),
resources_pb2.Concept(id="adultID", name="adult"),
]
),
metadata=metadata
)
if post_concepts_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post concepts failed, status: " + post_concepts_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiConceptResponse postConceptsResponse = stub.postConcepts(
PostConceptsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addConcepts(
Concept.newBuilder()
.setId("peopleID")
.setName("people")
)
.addConcepts(
Concept.newBuilder()
.setId("manID")
.setName("man")
)
.addConcepts(
Concept.newBuilder()
.setId("adultID")
.setName("adult")
)
.build()
);
if (postConceptsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post concepts failed, status: " + postConceptsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PostConcepts(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
concepts: [
{
id: "peopleID",
name: "people"
},
{
id: "manID",
name: "man"
},
{
id: "adultID",
name: "adult"
},
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post concepts failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/concepts' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/json' \
--data-raw '{
"concepts": [
{
"id": "peopleID",
"name": "people"
},
{
"id": "manID",
"name": "man"
},
{
"id": "adultID",
"name": "adult"
}
]
}'
Link Concepts
Link the newly created concepts with concepts in the Clarifai/Main General model.
Run the code below three times, once for each concept created previously. The concept IDs of the clarifai/main General models are the following:
ai_l8TKp2h5
- the people concept,ai_dxSG2s86
- the man concept,ai_VPmHr5bm
- the adult concept.
Your model's concept IDs are the ones you created in the previous step: peopleID
, manID
, and adultID
.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_concept_relations_response = stub.PostConceptRelations(
service_pb2.PostConceptRelationsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
concept_id="{YOUR_MODEL_CONCEPT_ID}",
concept_relations=[
resources_pb2.ConceptRelation(
object_concept=resources_pb2.Concept(id="{GENERAL_MODEL_CONCEPT_ID}", app_id="main"),
predicate="synonym"
)
]
),
metadata=metadata
)
if post_concept_relations_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post concept relations failed, status: " + post_concept_relations_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiConceptRelationResponse postConceptRelationsResponse = stub.postConceptRelations(
PostConceptRelationsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.setConceptId("{YOUR_MODEL_CONCEPT_ID}")
.addConceptRelations(
ConceptRelation.newBuilder()
.setObjectConcept(
Concept.newBuilder()
.setId("{GENERAL_MODEL_CONCEPT_ID}")
.setAppId("main")
)
.setPredicate("synonym").build())
.build()
);
if (postConceptRelationsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post concept relations failed, status: " + postConceptRelationsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PostConceptRelations(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
concept_id: "{YOUR_MODEL_CONCEPT_ID}",
concept_relations: [
{
object_concept: {
id: "{GENERAL_MODEL_CONCEPT_ID}",
app_id: "main"
},
predicate: "synonym"
}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post concept relations failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/concepts/{YOUR_MODEL_CONCEPT_ID}/relations' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/javascript' \
--data-raw '{
"concept_relations": [
{
"object_concept": {
"id": "{GENERAL_MODEL_CONCEPT_ID}",
"app_id": "main"
},
"predicate": "synonym"
}
]
}'
Create a Concept Mapper Model
We're going to create a concept mapper model that translates the concepts from the General model to our new concepts. The model will map the concepts as synonyms. Hypernyms and hyponyms are supported as well.
We'll be setting the knowledge_graph_id
value to be empty. If you wanted to define a subset of relationships in your app to be related to each other you can provide the knowledge_graph_id
to each concept relation and then provide that knowledge_graph_id
as input to this model as well which will only follow relationships in that subset of your app's knowledge graph.
from google.protobuf.struct_pb2 import Struct
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
params = Struct()
params.update({
"knowledge_graph_id": ""
})
post_models_response = stub.PostModels(
service_pb2.PostModelsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
models=[
resources_pb2.Model(
id="synonym-model-id",
model_type_id="concept-synonym-mapper",
output_info=resources_pb2.OutputInfo(
params=params,
)
),
]
),
metadata=metadata
)
if post_models_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post models failed, status: " + post_models_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
Struct.Builder params = Struct.newBuilder()
.putFields("knowledge_graph_id", Value.newBuilder().setStringValue("").build());
SingleModelResponse postModelsResponse = stub.postModels(
PostModelsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addModels(
Model.newBuilder()
.setId("synonym-model-id")
.setModelTypeId("concept-synonym-mapper")
.setOutputInfo(
OutputInfo.newBuilder()
.setParams(params)
)
)
.build()
);
if (postModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post models failed, status: " + postModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
const params = {
knowledge_graph_id: ""
}
stub.PostModels(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
models: [
{
id: "synonym-model-id",
model_type_id: "concept-synonym-mapper"
output_info: {
params: params,
}
},
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post models failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/models' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/javascript' \
--data-raw '{
"model": {
"id": "synonym-model-id",
"model_type_id": "concept-synonym-mapper",
"output_info": {
"params": {
"knowledge_graph_id": ""
}
}
}
}'
Create a "Greater Than" Concept Thresholder Model
This model will allow any predictions >= the concept values defined in the model to be output from this model.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
params = Struct()
params.update({
"concept_threshold_type": resources_pb2.GREATER_THAN
})
post_models_response = stub.PostModels(
service_pb2.PostModelsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
models=[
resources_pb2.Model(
id="greater-than-model-id",
model_type_id="concept-threshold",
output_info=resources_pb2.OutputInfo(
data=resources_pb2.Data(
concepts=[
resources_pb2.Concept(id="peopleID", value=0.5),
resources_pb2.Concept(id="manID", value=0.5),
resources_pb2.Concept(id="adultID", value=0.95),
]
),
params=params
)
),
]
),
metadata=metadata
)
if post_models_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post models failed, status: " + post_models_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
Struct.Builder params = Struct.newBuilder()
.putFields(
"concept_threshold_type",
Value.newBuilder().setNumberValue(ValueComparator.GREATER_THAN_VALUE).build()
);
SingleModelResponse postModelsResponse = stub.postModels(
PostModelsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addModels(
Model.newBuilder()
.setId("greater-than-model-id")
.setModelTypeId("concept-threshold")
.setOutputInfo(
OutputInfo.newBuilder()
.setData(
Data.newBuilder()
.addConcepts(
Concept.newBuilder()
.setId("peopleID")
.setValue(0.5f)
)
.addConcepts(
Concept.newBuilder()
.setId("manID")
.setValue(0.5f)
)
.addConcepts(
Concept.newBuilder()
.setId("adultID")
.setValue(0.95f)
)
)
.setParams(params)
)
)
.build()
);
if (postModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post models failed, status: " + postModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
const params = {
concept_threshold_type: "GREATER_THAN"
}
stub.PostModels(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
models: [
{
id: "greater-than-model-id",
model_type_id: "concept-threshold",
output_info: {
data: {
concepts: [
{id: "peopleID", value: 0.5},
{id: "manID", value: 0.5},
{id: "adultID", value: 0.95}
]
},
},
params: params
}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post models failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/models' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/javascript' \
--data-raw '{
"model": {
"id": "greater-than-model-id",
"model_type_id": "concept-threshold",
"output_info": {
"data": {
"concepts": [
{
"id": "peopleID",
"value": 0.5
},
{
"id": "manID",
"value": 0.5
},
{
"id": "adultID",
"value": 0.95
}
]
},
"params": {
"concept_threshold_type": 1
}
}
}
}'
Create a "Less Than" Concept Thresholder Model
This model will allow any predictions < the concept values defined in the model to be output from this model.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
params = Struct()
params.update({
"concept_threshold_type": resources_pb2.LESS_THAN
})
post_models_response = stub.PostModels(
service_pb2.PostModelsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
models=[
resources_pb2.Model(
id="less-than-model-id",
model_type_id="concept-threshold",
output_info=resources_pb2.OutputInfo(
data=resources_pb2.Data(
concepts=[
resources_pb2.Concept(id="peopleID", value=0.5),
resources_pb2.Concept(id="manID", value=0.5),
resources_pb2.Concept(id="adultID", value=0.95),
]
),
params=params
)
),
]
),
metadata=metadata
)
if post_models_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post models failed, status: " + post_models_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
Struct.Builder params = Struct.newBuilder()
.putFields(
"concept_threshold_type",
Value.newBuilder().setNumberValue(ValueComparator.LESS_THAN_VALUE).build()
);
SingleModelResponse postModelsResponse = stub.postModels(
PostModelsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addModels(
Model.newBuilder()
.setId("less-than-model-id")
.setModelTypeId("concept-threshold")
.setOutputInfo(
OutputInfo.newBuilder()
.setData(
Data.newBuilder()
.addConcepts(
Concept.newBuilder()
.setId("peopleID")
.setValue(0.5f)
)
.addConcepts(
Concept.newBuilder()
.setId("manID")
.setValue(0.5f)
)
.addConcepts(
Concept.newBuilder()
.setId("adultID")
.setValue(0.95f)
)
)
.setParams(params)
)
)
.build()
);
if (postModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post models failed, status: " + postModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
const params = {
concept_threshold_type: "LESS_THAN"
}
stub.PostModels(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
models: [
{
id: "less-than-model-id",
model_type_id: "concept-threshold",
output_info: {
data: {
concepts: [
{id: "peopleID", value: 0.5},
{id: "manID", value: 0.5},
{id: "adultID", value: 0.95}
]
},
params: params
}
}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post models failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/models' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/javascript' \
--data-raw '{
"model": {
"id": "less-than-model-id",
"model_type_id": "concept-threshold",
"output_info": {
"data": {
"concepts": [
{
"id": "peopleID",
"value": 0.5
},
{
"id": "manID",
"value": 0.5
},
{
"id": "adultID",
"value": 0.95
}
]
},
"params": {
"concept_threshold_type": 3
}
}
}
}'
Create a "Write Success as Me" Annotation Writer Model
Any incoming Data object full of concepts, regions, etc. will be writtent by this model to the database as an annotation with ANNOTATION_SUCCESS status as if the app owner did the work themself.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
params = Struct()
params.update({
"annotation_status": status_code_pb2.ANNOTATION_SUCCESS,
"annotation_user_id": "{YOUR_USER_ID}"
})
post_models_response = stub.PostModels(
service_pb2.PostModelsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
models=[
resources_pb2.Model(
id="write-success-model-id",
model_type_id="annotation-writer",
output_info=resources_pb2.OutputInfo(
params=params
)
),
]
),
metadata=metadata
)
if post_models_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post models failed, status: " + post_models_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
Struct.Builder params = Struct.newBuilder()
.putFields(
"annotation_status", Value.newBuilder().setNumberValue(StatusCode.ANNOTATION_SUCCESS_VALUE).build()
)
.putFields(
"annotation_user_id",
Value.newBuilder().setStringValue("{YOUR_USER_ID}").build()
);
SingleModelResponse postModelsResponse = stub.postModels(
PostModelsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addModels(
Model.newBuilder()
.setId("write-success-as-me-id")
.setModelTypeId("annotation-writer")
.setOutputInfo(
OutputInfo.newBuilder()
.setParams(params)
)
)
.build()
);
if (postModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post models failed, status: " + postModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
const params = {
annotation_status: "ANNOTATION_SUCCESS",
annotation_user_id: "{YOUR_USER_ID}"
}
stub.PostModels(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
models: [
{
id: "write-success-model-id",
model_type_id: "annotation-writer",
output_info: {
params: params
}
}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post models failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/models' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/javascript' \
--data-raw '{
"model": {
"id": "write-success-as-me",
"model_type_id": "annotation-writer",
"output_info": {
"params": {
"annotation_status": 24150,
"annotation_user_id": "{YOUR_USER_ID}"
}
}
}
}'
Create a "Write Pending as Me" Annotation Writer Model
Any incoming Data object full of concepts, regions, etc. will be written by this model to the database as an annotation with ANNOTATION_PENDING status as if the app owner did the work themself but needs further review so is marked pending.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
params = Struct()
params.update({
"annotation_status": status_code_pb2.ANNOTATION_PENDING,
"annotation_user_id": "{YOUR_USER_ID}"
})
post_models_response = stub.PostModels(
service_pb2.PostModelsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
models=[
resources_pb2.Model(
id="write-pending-model-id",
model_type_id="annotation-writer",
output_info=resources_pb2.OutputInfo(
params=params
)
),
]
),
metadata=metadata
)
if post_models_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post models failed, status: " + post_models_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
Struct.Builder params = Struct.newBuilder()
.putFields(
"annotation_status", Value.newBuilder().setNumberValue(StatusCode.ANNOTATION_PENDING_VALUE).build()
)
.putFields(
"annotation_user_id",
Value.newBuilder().setStringValue("{YOUR_USER_ID}").build()
);
SingleModelResponse postModelsResponse = stub.postModels(
PostModelsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addModels(
Model.newBuilder()
.setId("write-pending-as-me-id")
.setModelTypeId("annotation-writer")
.setOutputInfo(
OutputInfo.newBuilder()
.setParams(params)
)
)
.build()
);
if (postModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post models failed, status: " + postModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/models' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/javascript' \
--data-raw '{
"model": {
"id": "write-pending-as-me",
"model_type_id": "annotation-writer",
"output_info": {
"params": {
"annotation_status": 24151,
"annotation_user_id": "{YOUR_USER_ID}"
}
}
}
}'
Create the Workflow
We will now connect all the models together into a single workflow.
Every input will be predicted by General Embed model to generate embeddings. The output of the embed model (embeddings) will be sent to general concept to predict concept and cluster model. Then the concept model's output (a list of concepts with prediction values) will be sent to concept mapper model which maps Clarifai concepts to your concepts within your app, people
, man
and adult
in this case. Then the mapped concepts will be sent to both concept thresholds models (GREATER THAN
and LESS THAN
). GREATER THAN
model will filter out the concepts that are lower than corresponding value you defined in model and send the remaining concept list to write success as me
model which labels the input with these concepts (your app concepts only) as you with success
status. You can train or search on these concepts immediately. The LESS THAN
model will filter out concepts that are higher than the corresponding value you defined in the model and send the remaining concept list to write pending as me
model which labels the input with these concepts (your app concepts only) as you with pending
status.
The model IDs and model version IDs from the public clarifai/main
application are fixed to the latest version at the time of this writing (check GET /models for an always up to date list of available models), so they are already hard-coded in the code examples below. It's possible to use other public model or model version IDs.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_workflows_response = stub.PostWorkflows(
service_pb2.PostWorkflowsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
workflows=[
resources_pb2.Workflow(
id="auto-annotation-workflow-id",
nodes=[
resources_pb2.WorkflowNode(
id="general-embed",
model=resources_pb2.Model(
id="bbb5f41425b8468d9b7a554ff10f8581",
model_version=resources_pb2.ModelVersion(
id="bb186755eda04f9cbb6fe32e816be104"
)
)
),
resources_pb2.WorkflowNode(
id="general-concept",
model=resources_pb2.Model(
id="aaa03c23b3724a16a56b629203edc62c",
model_version=resources_pb2.ModelVersion(
id="aa7f35c01e0642fda5cf400f543e7c40"
)
)
),
resources_pb2.WorkflowNode(
id="general-cluster",
model=resources_pb2.Model(
id="cccbe437d6e54e2bb911c6aa292fb072",
model_version=resources_pb2.ModelVersion(
id="cc2074cff6dc4c02b6f4e1b8606dcb54"
)
),
),
resources_pb2.WorkflowNode(
id="mapper",
model=resources_pb2.Model(
id="synonym-model-id",
model_version=resources_pb2.ModelVersion(
id="{YOUR_SYNONYM_MODEL_VERSION_ID}"
)
),
node_inputs=[
resources_pb2.NodeInput(node_id="general-concept")
]
),
resources_pb2.WorkflowNode(
id="greater-than",
model=resources_pb2.Model(
id="greater-than-model-id",
model_version=resources_pb2.ModelVersion(
id="{YOUR_GREATER_THAN_MODEL_VERSION_ID}"
)
),
node_inputs=[
resources_pb2.NodeInput(node_id="mapper")
]
),
resources_pb2.WorkflowNode(
id="write-success",
model=resources_pb2.Model(
id="write-success-model-id",
model_version=resources_pb2.ModelVersion(
id="{YOUR_WRITE_SUCCESS_MODEL_VERSION_ID}"
)
),
node_inputs=[
resources_pb2.NodeInput(node_id="greater-than")
]
),
resources_pb2.WorkflowNode(
id="less-than",
model=resources_pb2.Model(
id="less-than-model-id",
model_version=resources_pb2.ModelVersion(
id="{YOUR_LESS_THAN_MODEL_VERSION_ID}"
)
),
node_inputs=[
resources_pb2.NodeInput(node_id="mapper")
]
),
resources_pb2.WorkflowNode(
id="write-pending",
model=resources_pb2.Model(
id="write-pending-model-id",
model_version=resources_pb2.ModelVersion(
id="{YOUR_WRITE_PENDING_MODEL_VERSION_ID}"
)
),
node_inputs=[
resources_pb2.NodeInput(node_id="less-than")
]
),
]
)
]
),
metadata=metadata
)
if post_workflows_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post workflows failed, status: " + post_workflows_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiWorkflowResponse postWorkflowsResponse = stub.postWorkflows(
PostWorkflowsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addWorkflows(
Workflow.newBuilder()
.setId("auto-annotation-workflow-id")
.addNodes(
WorkflowNode.newBuilder()
.setId("general-embed")
.setModel(
Model.newBuilder()
.setId("bbb5f41425b8468d9b7a554ff10f8581")
.setModelVersion(
ModelVersion.newBuilder()
.setId("bb186755eda04f9cbb6fe32e816be104")
)
)
)
.addNodes(
WorkflowNode.newBuilder()
.setId("general-concept")
.setModel(
Model.newBuilder()
.setId("aaa03c23b3724a16a56b629203edc62c")
.setModelVersion(
ModelVersion.newBuilder()
.setId("aa7f35c01e0642fda5cf400f543e7c40")
)
)
)
.addNodes(
WorkflowNode.newBuilder()
.setId("general-cluster")
.setModel(
Model.newBuilder()
.setId("cccbe437d6e54e2bb911c6aa292fb072")
.setModelVersion(
ModelVersion.newBuilder()
.setId("cc2074cff6dc4c02b6f4e1b8606dcb54")
)
)
)
.addNodes(
WorkflowNode.newBuilder()
.setId("mapper")
.setModel(
Model.newBuilder()
.setId("synonym-model-id")
.setModelVersion(
ModelVersion.newBuilder()
.setId("{YOUR_SYNONYM_MODEL_VERSION_ID}")
)
)
.addNodeInputs(NodeInput.newBuilder().setNodeId("general-concept"))
)
.addNodes(
WorkflowNode.newBuilder()
.setId("greater-than")
.setModel(
Model.newBuilder()
.setId("greater-than-model-id")
.setModelVersion(
ModelVersion.newBuilder()
.setId("{YOUR_GREATER_THAN_MODEL_VERSION_ID}")
)
)
.addNodeInputs(NodeInput.newBuilder().setNodeId("mapper"))
)
.addNodes(
WorkflowNode.newBuilder()
.setId("write-as-success-as-me")
.setModel(
Model.newBuilder()
.setId("write-success-as-me-id")
.setModelVersion(
ModelVersion.newBuilder()
.setId("{YOUR_WRITE_SUCCESS_AS_ME_MODEL_VERSION_ID}")
)
)
.addNodeInputs(NodeInput.newBuilder().setNodeId("greater-than"))
)
.addNodes(
WorkflowNode.newBuilder()
.setId("less-than")
.setModel(
Model.newBuilder()
.setId("less-than-model-id")
.setModelVersion(
ModelVersion.newBuilder()
.setId("{YOUR_LESS_THAN_MODEL_VERSION_ID}")
)
)
.addNodeInputs(NodeInput.newBuilder().setNodeId("mapper"))
)
.addNodes(
WorkflowNode.newBuilder()
.setId("write-pending")
.setModel(
Model.newBuilder()
.setId("write-pending-as-me-id")
.setModelVersion(
ModelVersion.newBuilder()
.setId("{YOUR_WRITE_PENDING_AS_ME_MODEL_VERSION_ID}")
)
)
.addNodeInputs(NodeInput.newBuilder().setNodeId("less-than"))
)
)
.build()
);
if (postWorkflowsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post workflows failed, status: " + postWorkflowsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PostWorkflows(
{
user_app_id: {
app_id: "e83440590d104cee97ef84af1856837d"
},
workflows: [
{
id: "auto-annotation-workflow-id",
nodes: [
{
id: "general-embed",
model: {
id: "bbb5f41425b8468d9b7a554ff10f8581",
model_version: {
id: "bb186755eda04f9cbb6fe32e816be104"
}
}
},
{
id: "general-concept",
model: {
id: "aaa03c23b3724a16a56b629203edc62c",
model_version: {
id: "aa7f35c01e0642fda5cf400f543e7c40"
}
}
},
{
id: "general-cluster",
model: {
id: "cccbe437d6e54e2bb911c6aa292fb072",
model_version: {
id: "cc2074cff6dc4c02b6f4e1b8606dcb54"
}
}
},
{
id: "mapper",
model: {
id: "synonym-model-id",
model_version: {
id: "{YOUR_SYNONYM_MODEL_VERSION_ID}"
}
},
node_inputs: [
{node_id: "general-concept"}
]
},
{
id: "greater-than",
model: {
id: "greater-than-model-id",
model_version: {
id: "{YOUR_GREATER_THAN_MODEL_VERSION_ID}"
}
},
node_inputs: [
{node_id: "mapper"}
]
},
{
id: "write-success",
model: {
id: "write-success-model-id",
model_version: {
id: "{YOUR_WRITE_SUCCESS_MODEL_VERSION_ID}"
}
},
node_inputs: [
{node_id: "greater-than"}
]
},
{
id: "less-than",
model: {
id: "less-than-model-id",
model_version: {
id: "{YOUR_LESS_THAN_MODEL_VERSION_ID}"
}
},
node_inputs: [
{node_id: "mapper"}
]
},
{
id: "write-pending",
model: {
id: "write-pending-model-id",
model_version: {
id: "{YOUR_WRITE_PENDING_MODEL_VERSION_ID}"
}
},
node_inputs: [
{node_id: "less-than"}
]
}
]
}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
console.log(response.status);
throw new Error("Post workflows failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/workflows' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/json' \
--data-raw '{
"workflows": [
{
"id": "auto-annotation-workflow-id",
"nodes": [
{
"id": "general-embed",
"model": {
"id": "{YOUR_GENERAL_EMBED_MODEL_ID}",
"model_version": {
"id": "{YOUR_GENERAL_EMBED_MODEL_VERSION_ID}"
}
}
},
{
"id": "general-concept",
"model": {
"id": "{YOUR_GENERAL_CONCEPT_MODEL_ID}",
"model_version": {
"id": "{YOUR_GENERAL_CONCEPT_MODEL_VERSION_ID}"
}
}
},
{
"id": "general-cluster",
"model": {
"id": "{YOUR_GENERAL_CLUSTER_MODEL_ID}",
"model_version": {
"id": "{YOUR_GENERAL_CLUSTER_MODEL_VERSION_ID}"
}
}
},
{
"id": "mapper",
"model": {
"id": "synonym-model-id",
"model_version": {
"id": "{YOUR_MAPPER_MODEL_VERSION_ID}"
}
},
"node_inputs": [
{
"node_id": "general-concept"
}
]
},
{
"id": "greater-than",
"model": {
"id": "greater-than-model-id",
"model_version": {
"id": "{YOUR_GREATER_THAN_MODEL_VERSION_ID}"
}
},
"node_inputs": [
{
"node_id": "mapper"
}
]
},
{
"id": "write-success",
"model": {
"id": "write-success-as-me",
"model_version": {
"id": "{YOUR_WRITE_AS_ME_MODEL_VERSION_ID}"
}
},
"node_inputs": [
{
"node_id": "greater-than"
}
]
},
{
"id": "less-than",
"model": {
"id": "less-than-model-id",
"model_version": {
"id": "{YOUR_LESS_THAN_MODEL_VERSION_ID}"
}
},
"node_inputs": [
{
"node_id": "mapper"
}
]
},
{
"id": "write-pending",
"model": {
"id": "write-pending-as-me",
"model_version": {
"id": "{YOUR_WRITE_AS_COLLABORATOR_MODEL_VERSION_ID}"
}
},
"node_inputs": [
{
"node_id": "less-than"
}
]
}
]
}
]
}'
Make the New Workflow your App's Default
Make this the default workflow in the app, so it will run every time we add an input and execute the auto annotation process. If the workflow is not the default workflow of your app you can still use PostWorkflowResults on new inputs to check that you configured the workflow graph and your models properly but the data will not be written to the DB. This is recommended before making it your default workflow and adding inputs to you app.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
patch_apps_response = stub.PatchApps(
service_pb2.PatchAppsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
action="overwrite",
apps=[
resources_pb2.App(
id="{YOUR_APP_ID}",
default_workflow_id="auto-annotation-workflow-id"
)
]
),
metadata=metadata
)
if patch_apps_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Patch apps failed, status: " + patch_apps_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiAppResponse patchAppsResponse = stub.patchApps(
PatchAppsRequest.newBuilder()
.setAction("overwrite")
.addApps(
App.newBuilder()
.setId("{YOUR_APP_ID}")
.setDefaultWorkflowId("auto-annotation-workflow-id")
).build()
);
if (patchAppsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Patch apps failed, status: " + patchAppsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PatchApps(
{
action: "overwrite",
apps: [
{
id: "{YOUR_APP_ID}",
default_workflow_id: "auto-annotation-workflow-id"
}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
console.log(response.status);
throw new Error("Patch apps failed, status: " + response.status.description);
}
}
);
curl -X PATCH 'https://api.clarifai.com/v2/users/me/apps' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/json' \
--data-raw '{
"action": "overwrite",
"apps": [
{
"id": "{{app}}",
"default_workflow_id": "auto-annotation-workflow-ID"
}
]
}'
Add an Image
Adding the image will trigger the default workflow.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_inputs_response = stub.PostInputs(
service_pb2.PostInputsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
image=resources_pb2.Image(
url="{YOUR_IMAGE_URL}"
)
)
)
]
),
metadata=metadata
)
if post_inputs_response.status.code != status_code_pb2.SUCCESS:
raise Exception("Post inputs failed, status: " + post_inputs_response.status.description)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiInputResponse postInputsResponse = stub.postInputs(
PostInputsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addInputs(
Input.newBuilder()
.setData(
Data.newBuilder()
.setImage(
Image.newBuilder()
.setUrl("{YOUR_IMAGE_URL}")
)
)
)
.build()
);
if (postInputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post inputs failed, status: " + postInputsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PostInputs(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
inputs: [
{
data: {
image: {
url: "{YOUR_IMAGE_URL}"
}
}
}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
console.log(response.status);
throw new Error("Post inputs failed, status: " + response.status.description);
}
}
);
curl -X POST 'https://api.clarifai.com/v2/users/me/apps/{{app}}/inputs' \
-H 'Authorization: Key {{PAT}}' \
-H 'Content-Type: application/json' \
--data-raw '{
"inputs": [
{
"data": {
"image": {
"url": "{YOUR_IMAGE_URL}"
}
}
}
]
}'
List Annotations
Now you can list annotations with your user id to see the annotations created by your workflow.
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
list_annotations_response = stub.ListAnnotations(
service_pb2.ListAnnotationsRequest(
user_app_id=userDataObject, # The userDataObject is created in the overview and is required when using a PAT
user_ids=["{YOUR_USER_ID}"],
list_all_annotations=True,
),
metadata=metadata
)
if list_annotations_response.status.code != status_code_pb2.SUCCESS:
raise Exception("List annotations failed, status: " + list_annotations_response.status.description)
for annotation in list_annotations_response.annotations:
print(annotation)
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiAnnotationResponse listAnnotationsResponse = stub.listAnnotations(
ListAnnotationsRequest.newBuilder()
.setUserAppId(UserAppIDSet.newBuilder().setAppId("{YOUR_APP_ID}"))
.addUserIds("{YOUR_USER_ID}")
.setListAllAnnotations(true)
.build()
);
if (listAnnotationsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("List annotations failed, status: " + listAnnotationsResponse.getStatus());
}
for (Annotation annotation : listAnnotationsResponse.getAnnotationsList()) {
System.out.println(annotation);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.ListAnnotations(
{
user_app_id: {
app_id: "{YOUR_APP_ID}"
},
user_ids: ["{YOUR_USER_ID}"],
list_all_annotations: true
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("List annotations failed, status: " + response.status.description);
}
for (const annotation of response.annotations) {
console.log(annotation);
}
}
);
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/annotations?user_ids={YOUR_USER_ID}
Last updated