To create a model, you need to specify the model's name and other required fields (which depend on the model). Specifying the ID is optional.
Below, we create a classifier model with one initial concept. You can always add and remove concepts later.
importcom.clarifai.grpc.api.*;importcom.clarifai.grpc.api.status.*;// Insert here the initialization code as outlined on this page:// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructionsSingleModelResponse postModelsResponse =stub.postModels(PostModelsRequest.newBuilder().addModels(Model.newBuilder().setId("petsID").setOutputInfo(OutputInfo.newBuilder().setData(Data.newBuilder().addConcepts(Concept.newBuilder().setId("boscoe")) ) ) ).build());if (postModelsResponse.getStatus().getCode() !=StatusCode.SUCCESS) {thrownewRuntimeException("Post models failed, status: "+postModelsResponse.getStatus());
// Insert here the initialization code as outlined on this page:// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructionsstub.PostModels( { models: [ { id:"petsID", output_info: { data: {concepts: [{id:"boscoe"}]}, } } ] }, metadata, (err, response) => {if (err) {thrownewError(err); }if (response.status.code !==10000) {thrownewError("Post models failed, status: "+response.status.description); } });
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_models_response = stub.PostModels(
service_pb2.PostModelsRequest(
models=[
resources_pb2.Model(
id="petsID",
output_info=resources_pb2.OutputInfo(
data=resources_pb2.Data(
concepts=[resources_pb2.Concept(id="boscoe", value=1)]
),
)
)
]
),
metadata=metadata
)
if post_models_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(post_models_response.outputs[0].status.code))
print("\tDescription: {}".format(post_models_response.outputs[0].status.description))
print("\tDetails: {}".format(post_models_response.outputs[0].status.details))
raise Exception("Post models failed, status: " + post_models_response.status.description)
Learn about available model types and their hyperparameters. This endpoint lists all the possible models that are creatable (when creatable=true), or in general in the platform (the others ones have creatable=false).
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiModelTypeResponse listModelTypesResponse = stub.listModelTypes(ListModelTypesRequest.newBuilder().build());
for (ModelType modelType : listModelTypesResponse.getModelTypesList()) {
System.out.println(modelType);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.ListModelTypes(
{
page: 1,
per_page: 500
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Received status: " + response.status.description + "\n" + response.status.details);
}
for (const model_type of response.model_types) {
console.log(model_type)
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
response = stub.ListModelTypes(
service_pb2.ListModelTypesRequest(),
metadata=metadata
)
if response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(response.outputs[0].status.code))
print("\tDescription: {}".format(response.outputs[0].status.description))
print("\tDetails: {}".format(response.outputs[0].status.details))
raise Exception("Patch models failed, status: " + response.status.description)
for model_type in response.model_types:
print(model_type)
curl -X GET 'https://api.clarifai.com/v2/models/types?per_page=20&page=1' \
-H 'Authorization: Key YOUR_API_KEY'
To get a list of all models including models you've created as well as Clarifai models:
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiModelResponse listModelsResponse = stub.listModels(
ListModelsRequest.newBuilder().build()
);
if (listModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("List models failed, status: " + listModelsResponse.getStatus());
}
List<Model> models = listModelsResponse.getModelsList();
for (Model model : models) {
System.out.println(model);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.ListModels(
{},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("List models failed, status: " + response.status.description);
}
for (const model of response.models) {
console.log(JSON.stringify(model, null, 2));
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
list_models_response = stub.ListModels(
service_pb2.ListModelsRequest(),
metadata=metadata
)
if list_models_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(list_models_response.outputs[0].status.code))
print("\tDescription: {}".format(list_models_response.outputs[0].status.description))
print("\tDetails: {}".format(list_models_response.outputs[0].status.details))
raise Exception("List models failed, status: " + list_models_response.status.description)
for model in list_models_response.models:
print(model)
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/models
All models have unique Ids. You can get a specific model by its id:
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
SingleModelResponse getModelResponse = stub.getModel(
GetModelRequest.newBuilder()
.setModelId("petsID")
.build()
);
if (getModelResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Get model failed, status: " + getModelResponse.getStatus());
}
Model model = getModelResponse.getModel();
System.out.println(model);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.GetModel(
{model_id: "petsID"},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("List models failed, status: " + response.status.description);
}
const model = response.model;
console.log(JSON.stringify(model, null, 2));
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
get_model_response = stub.GetModel(
service_pb2.GetModelRequest(model_id="petsID"),
metadata=metadata
)
if get_model_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(get_model_response.outputs[0].status.code))
print("\tDescription: {}".format(get_model_response.outputs[0].status.description))
print("\tDetails: {}".format(get_model_response.outputs[0].status.details))
raise Exception("Get model failed, status: " + get_model_response.status.description)
model = get_model_response.model
print(model)
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/models/petsID
The output info of a model lists what concepts it contains.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
SingleModelResponse getModelOutputInfoResponse = stub.getModelOutputInfo(
GetModelRequest.newBuilder()
.setModelId("petsID")
.build()
);
if (getModelOutputInfoResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Get model output info failed, status: " + getModelOutputInfoResponse.getStatus());
}
Model model = getModelOutputInfoResponse.getModel();
System.out.println(model);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.GetModelOutputInfo(
{model_id: "petsID"},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("List models failed, status: " + response.status.description);
}
const model = response.model;
console.log(JSON.stringify(model, null, 2));
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
get_model_response = stub.GetModelOutputInfo(
service_pb2.GetModelRequest(model_id="petsID"),
metadata=metadata
)
if get_model_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(get_model_response.outputs[0].status.code))
print("\tDescription: {}".format(get_model_response.outputs[0].status.description))
print("\tDetails: {}".format(get_model_response.outputs[0].status.details))
raise Exception("Get model failed, status: " + get_model_response.status.description)
model = get_model_response.model
print(model)
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/models/petsID/output_info
Every time you train a model, it creates a new version. You can list all the versions created.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiModelVersionResponse listModelVersionsResponse = stub.listModelVersions(
ListModelVersionsRequest.newBuilder()
.setModelId("petsID")
.build()
);
if (listModelVersionsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("List model versions failed, status: " + listModelVersionsResponse.getStatus());
}
List<ModelVersion> modelVersions = listModelVersionsResponse.getModelVersionsList();
for (ModelVersion modelVersion : modelVersions) {
System.out.println(modelVersion);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.ListModelVersions(
{model_id: "petsID"},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("List model versions failed, status: " + response.status.description);
}
for (const model_version of response.model_versions) {
console.log(JSON.stringify(model_version, null, 2));
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
list_model_versions_response = stub.ListModelVersions(
service_pb2.ListModelVersionsRequest(
model_id="petsID"
),
metadata=metadata
)
if list_model_versions_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(list_model_versions_response.outputs[0].status.code))
print("\tDescription: {}".format(list_model_versions_response.outputs[0].status.description))
print("\tDetails: {}".format(list_model_versions_response.outputs[0].status.details))
raise Exception("List model versions failed, status: " + list_model_versions_response.status.description)
for model_version in list_model_versions_response.model_versions:
print(model_version)
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/models/petsID/versions
To get a specific model version, you must provide the model_id as well as the version_id. You can inspect the model version status to determine if your model is trained or still training.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
SingleModelVersionResponse getModelVersionResponse = stub.getModelVersion(
GetModelVersionRequest.newBuilder()
.setModelId("petsID")
.setVersionId("{YOUR_MODEL_VERSION_ID}")
.build()
);
if (getModelVersionResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Get model version failed, status: " + getModelVersionResponse.getStatus());
}
ModelVersion modelVersion = getModelVersionResponse.getModelVersion();
System.out.println(modelVersion);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.GetModelVersion(
{model_id: "petsID", version_id: "{YOUR_MODEL_VERSION_ID}"},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Get model version failed, status: " + response.status.description);
}
const model_version = response.model_version;
console.log(JSON.stringify(model_version, null, 2));
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
get_model_version_response = stub.GetModelVersion(
service_pb2.GetModelVersionRequest(
model_id="petsID",
version_id="{YOUR_MODEL_VERSION_ID}"
),
metadata=metadata
)
if get_model_version_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(get_model_version_response.outputs[0].status.code))
print("\tDescription: {}".format(get_model_version_response.outputs[0].status.description))
print("\tDetails: {}".format(get_model_version_response.outputs[0].status.details))
raise Exception("Get model version failed, status: " + get_model_version_response.status.description)
model_version = get_model_version_response.model_version
print(model_version)
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/models/petsID/versions/{YOUR_MODEL_VERSION_ID}
You can list all the inputs that were used to train the model.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiInputResponse listModelInputsResponse = stub.listModelInputs(
ListModelInputsRequest.newBuilder()
.setModelId("petsID")
.build()
);
if (listModelInputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("List model inputs failed, status: " + listModelInputsResponse.getStatus());
}
List<Input> inputs = listModelInputsResponse.getInputsList();
for (Input input : inputs) {
System.out.println(input);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.ListModelInputs(
{model_id: "petsID"},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("List model inputs failed, status: " + response.status.description);
}
for (const input of response.inputs) {
console.log(JSON.stringify(input, null, 2));
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
list_model_inputs_response = stub.ListModelInputs(
service_pb2.ListModelInputsRequest(model_id="petsID"),
metadata=metadata
)
if list_model_inputs_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(list_model_inputs_response.outputs[0].status.code))
print("\tDescription: {}".format(list_model_inputs_response.outputs[0].status.description))
print("\tDetails: {}".format(list_model_inputs_response.outputs[0].status.details))
raise Exception("List model inputs failed, status: " + list_model_inputs_response.status.description)
for input_object in list_model_inputs_response.inputs:
print(input_object)
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/models/petsID/inputs
You can also list all the inputs that were used to train a specific model version.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiInputResponse listModelInputsResponse = stub.listModelInputs(
ListModelInputsRequest.newBuilder()
.setModelId("petsID")
.setVersionId("{YOUR_MODEL_VERSION_ID}")
.build()
);
if (listModelInputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("List model inputs failed, status: " + listModelInputsResponse.getStatus());
}
List<Input> inputs = listModelInputsResponse.getInputsList();
for (Input input : inputs) {
System.out.println(input);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.ListModelInputs(
{
model_id: "petsID",
version_id: "{YOUR_MODEL_VERSION_ID}"
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("List model inputs failed, status: " + response.status.description);
}
for (const input of response.inputs) {
console.log(JSON.stringify(input, null, 2));
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
list_model_inputs_response = stub.ListModelInputs(
service_pb2.ListModelInputsRequest(
model_id="petsID",
version_id="{YOUR_MODEL_VERSION_ID}"
),
metadata=metadata
)
if list_model_inputs_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(list_model_inputs_response.outputs[0].status.code))
print("\tDescription: {}".format(list_model_inputs_response.outputs[0].status.description))
print("\tDetails: {}".format(list_model_inputs_response.outputs[0].status.details))
raise Exception("List model inputs failed, status: " + list_model_inputs_response.status.description)
for input_object in list_model_inputs_response.inputs:
print(input_object)
curl -X GET \
-H "Authorization: Key YOUR_API_KEY" \
https://api.clarifai.com/v2/models/petsID/versions/{YOUR_MODEL_VERSION_ID}/inputs
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
BaseResponse deleteModelResponse = stub.deleteModel(
DeleteModelRequest.newBuilder()
.setModelId("petsID")
.build()
);
if (deleteModelResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Delete model failed, status: " + deleteModelResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.DeleteModel(
{model_id: "petsID"},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Delete model failed, status: " + response.status.description);
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
delete_model_response = stub.DeleteModel(
service_pb2.DeleteModelRequest(model_id="petsID"),
metadata=metadata
)
if delete_model_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(delete_model_response.outputs[0].status.code))
print("\tDescription: {}".format(delete_model_response.outputs[0].status.description))
print("\tDetails: {}".format(delete_model_response.outputs[0].status.details))
raise Exception("Delete model failed, status: " + delete_model_response.status.description)
You can also delete a specific version of a model with the model_id and version_id.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
BaseResponse deleteModelVersionResponse = stub.deleteModelVersion(
DeleteModelVersionRequest.newBuilder()
.setModelId("petsID")
.setVersionId("{YOUR_MODEL_VERSION_ID}")
.build()
);
if (deleteModelVersionResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Delete model version failed, status: " + deleteModelVersionResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.DeleteModelVersion(
{
model_id: "petsID",
version_id: "{YOUR_MODEL_VERSION_ID}"
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Delete model version failed, status: " + response.status.description);
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
delete_model_version_response = stub.DeleteModelVersion(
service_pb2.DeleteModelVersionRequest(
model_id="petsID",
version_id="{YOUR_MODEL_VERSION_ID}"
),
metadata=metadata
)
if delete_model_version_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(delete_model_version_response.outputs[0].status.code))
print("\tDescription: {}".format(delete_model_version_response.outputs[0].status.description))
print("\tDetails: {}".format(delete_model_version_response.outputs[0].status.details))
raise Exception("Delete model version failed, status: " + delete_model_version_response.status.description)
If you would like to delete all models associated with an application, you can also do that. Please proceed with caution as these cannot be recovered.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
BaseResponse deleteModelsResponse = stub.deleteModels(
DeleteModelsRequest.newBuilder()
.setDeleteAll(true)
.build()
);
if (deleteModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Delete models failed, status: " + deleteModelsResponse.getStatus());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.DeleteModels(
{delete_all: true},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Delete models failed, status: " + response.status.description);
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
delete_models_response = stub.DeleteModels(
service_pb2.DeleteModelsRequest(delete_all=True),
metadata=metadata
)
if delete_models_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(delete_models_response.outputs[0].status.code))
print("\tDescription: {}".format(delete_models_response.outputs[0].status.description))
print("\tDetails: {}".format(delete_models_response.outputs[0].status.details))
raise Exception("Delete models failed, status: " + delete_models_response.status.description)
When you train a model, you are telling the system to look at successfully indexed images with concepts you've provided and learn from them. This train operation is asynchronous. It may take a few seconds for your model to be fully trained and ready.
Note: you can repeat this operation as often as you like. By adding more images with concepts and training, you can get the model to predict exactly how you want it to.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
SingleModelResponse postModelVersionsResponse = stub.postModelVersions(
PostModelVersionsRequest.newBuilder()
.setModelId("petsID")
.build()
);
if (postModelVersionsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post model versions failed, status: " + postModelVersionsResponse.getStatus());
}
String modelVersionId = postModelVersionsResponse.getModel().getModelVersion().getId();
System.out.println("New model version ID: " + modelVersionId);
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PostModelVersions(
{model_id: "petsID"},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post model versions failed, status: " + response.status.description);
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_model_versions = stub.PostModelVersions(
service_pb2.PostModelVersionsRequest(
model_id="petsID"
),
metadata=metadata
)
if post_model_versions.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(post_model_versions.outputs[0].status.code))
print("\tDescription: {}".format(post_model_versions.outputs[0].status.description))
print("\tDetails: {}".format(post_model_versions.outputs[0].status.details))
raise Exception("Post model versions failed, status: " + post_model_versions.status.description)
Once you have trained a model you are ready to use your new model to get predictions. The predictions returned will only contain the concepts that you told it to see.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
PostModelOutputsRequest.newBuilder()
.setModelId("petsID")
.setVersionId("{YOUR_MODEL_VERSION_ID}") // Optional. Defaults to the latest version.
.addInputs(
Input.newBuilder().setData(
Data.newBuilder().setImage(
Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
)
)
)
.build()
);
if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}
// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);
System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PostModelOutputs(
{
model_id: "petsID",
version_id: "{YOUR_MODEL_VERSION_ID}", // This is optional. Defaults to the latest model version.
inputs: [
{data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
]
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post model outputs failed, status: " + response.status.description);
}
// Since we have one input, one output will exist here.
const output = response.outputs[0];
console.log("Predicted concepts:");
for (const concept of output.data.concepts) {
console.log(concept.name + " " + concept.value);
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
model_id="petsID",
version_id="{YOUR_MODEL_VERSION_ID}", # This is optional. Defaults to the latest model version.
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
image=resources_pb2.Image(
url="https://samples.clarifai.com/metro-north.jpg"
)
)
)
]
),
metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(post_model_outputs_response.outputs[0].status.code))
print("\tDescription: {}".format(post_model_outputs_response.outputs[0].status.description))
print("\tDetails: {}".format(post_model_outputs_response.outputs[0].status.details))
raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)
# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]
print("Predicted concepts:")
for concept in output.data.concepts:
print("%s %.2f" % (concept.name, concept.value))
curl -X POST \
-H "Authorization: Key YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '
{
"inputs": [
{
"data": {
"image": {
"url": "https://samples.clarifai.com/puppy.jpeg"
}
}
}
]
}'\
https://api.clarifai.com/v2/models/petsID/outputs
# Model version defaults to latest. If you want to specify the model version, use this URL:
# https://api.clarifai.com/v2/models/petsID/versions/{YOUR_MODEL_VERSION_ID}/outputs
const raw = JSON.stringify({
"user_app_id": {
"user_id": "{YOUR_USER_ID}",
"app_id": "{YOUR_APP_ID}"
},
"inputs": [
{
"data": {
"image": {
"url": "https://samples.clarifai.com/puppy.jpeg"
}
}
}
]
});
const requestOptions = {
method: 'POST',
headers: {
'Accept': 'application/json',
'Authorization': 'Key {YOUR_PERSONAL_TOKEN}'
},
body: raw
};
// NOTE: MODEL_VERSION_ID is optional, you can also call prediction with the MODEL_ID only
// https://api.clarifai.com/v2/models/{YOUR_MODEL_ID}/outputs
// this will default to the latest version_id
fetch("https://api.clarifai.com/v2/models/petsID/versions/{MODEL_VERSION_ID}/outputs", requestOptions)
.then(response => response.text())
.then(result => console.log(JSON.parse(result, null, 2).outputs[0].data))
.catch(error => console.log('error', error));
Search Models By Name And Type
You can search all your models by name and type of model.
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
MultiModelResponse postModelsSearchesResponse = stub.postModelsSearches(
PostModelsSearchesRequest.newBuilder()
.setModelQuery(
ModelQuery.newBuilder()
.setName("gen*")
.setType("concept")
)
.build()
);
if (postModelsSearchesResponse.getStatus().getCode() != StatusCode.SUCCESS) {
throw new RuntimeException("Post models searches failed, status: " + postModelsSearchesResponse.getStatus());
}
List<Model> models = postModelsSearchesResponse.getModelsList();
for (Model model : models) {
System.out.println(model);
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
stub.PostModelsSearches(
{
model_query: {
name: "gen*",
type: "concept"
}
},
metadata,
(err, response) => {
if (err) {
throw new Error(err);
}
if (response.status.code !== 10000) {
throw new Error("Post model searches failed, status: " + response.status.description);
}
const models = response.models;
for (const model of models) {
console.log(JSON.stringify(model, null, 2));
}
}
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions
post_models_searches_response = stub.PostModelsSearches(
service_pb2.PostModelsSearchesRequest(
model_query=resources_pb2.ModelQuery(
name="gen*",
type="concept"
)
),
metadata=metadata
)
if post_models_searches_response.status.code != status_code_pb2.SUCCESS:
print("There was an error with your request!")
print("\tCode: {}".format(post_models_searches_response.outputs[0].status.code))
print("\tDescription: {}".format(post_models_searches_response.outputs[0].status.description))
print("\tDetails: {}".format(post_models_searches_response.outputs[0].status.details))
raise Exception("Post models searches failed, status: " + post_models_searches_response.status.description)
for model in post_models_searches_response.models:
print(model)