Clarifai Guide
Clarifai Home
v7.11
v7.11
  • Welcome
  • Clarifai Basics
    • Start Here (5 mins or less!)
      • Your First AI Predictions (~1 min)
      • Your First Visual Search App (~1 min)
      • Your First Custom Model (~5 mins)
    • Key Terminology to Know
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Authorize
      • Personal Access Tokens
      • Scopes
      • 2FA
      • Roll-Based Access Control
    • Clarifai Community Quick Start
  • API Guide
    • Clarifai API Basics
      • Clarifai API Clients
        • gRPC vs HTTP Channels
      • Helpful API Resources
        • Using Postman with Clarifai APIs
    • Your Data
      • Datasets
        • Dataset Basics
        • Dataset Filters
        • Dataset Inputs
        • Dataset Versions
      • Supported Formats
      • Adding and Removing Data
      • Collectors
    • Making Predictions
      • Images
      • Video
      • Text
      • Prediction Parameters
      • Multilingual Classification
    • Creating and Managing Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Labeling Your Data
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Creating and Training Models
      • Clarifai Models
      • Model Types
      • Custom Models
      • Custom Text Model
      • Create, Get, Update, Delete
      • Deep Training
    • Evaluating Models
      • Interpreting Evaluations
      • Improving Your Model
    • Creating Workflows
      • Base Workflows
      • Input Nodes
      • Setting Up Mesh Workflows
      • Common Workflows
        • Workflow Predict
        • Auto Annotation
        • Custom KNN Face Classifier Workflow
        • Visual Text Recognition
    • Search, Sort, Filter and Save
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
    • Advanced Topics
      • Status Codes
      • Patching
      • Pagination
      • Batch Predict CSV on Custom Text Model
      • Document Processing
  • Portal Guide
    • Clarifai Portal Basics
    • Your Data
      • Supported Formats
      • Exploring Your Data
        • Predictions
        • Annotations
        • Bulk Labeling
        • Proposals
        • Object Tracking
      • Collectors
    • Making Predictions
    • Creating and Managing Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Labeling Your Data
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Creating and Training Models
      • Training Basics
      • Clarifai Models
      • Custom Models
      • Model Types
      • Deep Training
    • Evaluating Models
      • Interpreting Evaluations
      • Improving Your Model
    • Creating Workflows
      • Input Nodes
      • Workflow Builder
      • Base Workflows
      • Setting Up a Workflow
      • Common Workflows
        • Auto Annotation
        • Visual Text Recognition
        • Text Classification
    • Search, Sort, Filter and Save
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
      • Text Search
    • Advanced Topics
      • Importing Data with CSV and TSV Files
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 8.1
      • Release 8.0
      • Release 7.11
      • Release 7.10
      • Release 7.9
      • Release 7.8
      • Release 7.7
      • Release 7.6
      • Release 7.5
      • Release 7.4
      • Release 7.3
      • Release 7.2
      • Release 7.1
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
  • Additional Resources
    • API Status
    • Clarifai Blog
    • Clarifai Help
    • Clarifai Community
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. API Guide
  2. Search, Sort, Filter and Save
  3. Legacy Search

Combine or Negate

You can also combine searches using AND.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

// Here we search for images which we labeled with "cat" and for which the General prediction model does not find
// a "dog" concept.
MultiSearchResponse postSearchesResponse = stub.postSearches(
    PostSearchesRequest.newBuilder().setQuery(
        Query.newBuilder()
            .addAnds(
                And.newBuilder().setInput( // Setting Input indicates we search for images that have the concept(s)
                                           // which we added to the input manually.
                    Input.newBuilder().setData(
                        Data.newBuilder().addConcepts(
                            Concept.newBuilder()
                                .setName("cat")
                                .setValue(1f)
                        )
                    )
                )
            )
            .addAnds(
                And.newBuilder().setOutput(  // Setting Output indicates we search for images that have the concept(s)
                                             // which were predicted by the General model.
                    Output.newBuilder().setData(
                        Data.newBuilder().addConcepts(
                            Concept.newBuilder()
                                .setName("dog")
                                .setValue(0f)
                        )
                    )
                )
            )
    )
    .build()
);

if (postSearchesResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post searches failed, status: " + postSearchesResponse.getStatus());
}

System.out.println("Found inputs " + postSearchesResponse.getHitsCount() + ":");
for (Hit hit : postSearchesResponse.getHitsList()) {
    System.out.printf("\tScore %.2f for %s\n", hit.getScore(), hit.getInput().getId());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

// Here we search for images which we labeled with "cat" and for which the General prediction model does not find
// a "dog" concept.
stub.PostSearches(
    {
        query: {
            ands: [
                {
                    input: {  // Setting Input indicates we search for images that have the concept(s)
                              // which we added to the input manually.
                        data: {
                            concepts: [
                                {
                                    name: "cat",
                                    value: 1
                                }
                            ]
                        }
                    }
                },
                {
                    output: {  // Setting Output indicates we search for images that have the concept(s)
                               // which were predicted by the General model.
                        data: {
                            concepts: [
                                {
                                    name: "dog",
                                    value: 0
                                }
                            ]
                        }
                    }
                }
            ]
        }
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post searches failed, status: " + response.status.description);
        }

        console.log("Found inputs:");
        for (const hit of response.hits) {
            console.log("\tScore " + hit.score + " for " + hit.input.id);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

# Here we search for images which we labeled with "cat" and for which the General prediction model does not find
# a "dog" concept.
post_searches_response = stub.PostSearches(
    service_pb2.PostSearchesRequest(
        query=resources_pb2.Query(
            ands=[
                resources_pb2.And(
                    input=resources_pb2.Input(  # Setting Input indicates we search for images that have the concept(s)
                                                # which we added to the input manually.
                        data=resources_pb2.Data(
                            concepts=[
                                resources_pb2.Concept(
                                    name="cat",
                                    value=1
                                )
                            ]
                        )
                    )
                ),
                resources_pb2.And(
                    output=resources_pb2.Output(  # Setting Output indicates we search for images that have the concept(s)
                                                  # which were predicted by the General model.
                        data=resources_pb2.Data(
                            concepts=[
                                resources_pb2.Concept(
                                    name="dog",
                                    value=0
                                )
                            ]
                        )
                    )
                )
            ]
        )
    ),
    metadata=metadata
)

if post_searches_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post searches failed, status: " + post_searches_response.status.description)

print("Found inputs:")
for hit in post_searches_response.hits:
    print("\tScore %.2f for %s" % (hit.score, hit.input.id))
app.inputs.search([
  { input: { url: 'https://samples.clarifai.com/puppy.jpeg' } },
  { concept: { name: 'cat', type: 'input' } },
  { concept: { name: 'dog' } }
]).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp, InputSearchTerm, OutputSearchTerm, SearchQueryBuilder
app = ClarifaiApp(api_key='YOUR_API_KEY')

term1 = InputSearchTerm(concept='cat')
term2 = OutputSearchTerm(concept='dog', value=False)
term3 = OutputSearchTerm(url="https://samples.clarifai.com/metro-north.jpg")

query = SearchQueryBuilder()
query.add_term(term1)
query.add_term(term2)
query.add_term(term3)

app.inputs.search(query)
client.searchInputs()
    .ands(
        SearchClause.matchUserTaggedConcept(Concept.forName("cat")),
        SearchClause.matchConcept(Concept.forName("dog").withValue(false)),
        SearchClause.matchImageVisually(ClarifaiImage.of("https://samples.clarifai.com/metro-north.jpg"))
    )
    .getPage(1)
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Searches;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.SearchInputs(
                    SearchBy.UserTaggedConceptName("cat"),
                    SearchBy.ConceptName("dog"),
                    SearchBy.ImageURL("https://samples.clarifai.com/metro-north.jpg"))
                .Page(1)
                .ExecuteAsync();
        }
    }
}
//Search for inputs that are predicted as "fast" and visually similar to the given image.
ClarifaiConcept *conceptFromGeneralModel = [[ClarifaiConcept alloc] initWithConceptName:@"fast"];
ClarifaiSearchTerm *term1 = [ClarifaiSearchTerm searchByPredictedConcept:conceptFromGeneralModel];

ClarifaiSearchTerm *term2 = [ClarifaiSearchTerm searchVisuallyWithImageURL:@"https://samples.clarifai.com/metro-north.jpg"];

[_app search:@[term1, term2] page:@1 perPage:@20 completion:^(NSArray<ClarifaiSearchResult *> *results, NSError *error) {
  // Print output of first search result.
  NSLog(@"inputID: %@", results[0].inputID);
  NSLog(@"URL: %@", results[0].mediaURL);
  NSLog(@"probability of input matching search query: %@", results[0].score);
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Searches\SearchBy;
use Clarifai\DTOs\Searches\SearchInputsResult;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->searchInputs([
        SearchBy::userTaggedConceptName('cat'),
        SearchBy::conceptName('dog'),
        SearchBy::imageURL('https://samples.clarifai.com/metro-north.jpg')
    ])
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var SearchInputsResult $result */
    $result = $response->get();

    foreach ($result->searchHits() as $searchHit) {
        echo $searchHit->input()->id() . ' ' . $searchHit->score() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
# Here we search for images which we labeled with "cat" and for which the General prediction model does not find
# a "dog" concept.

curl -X POST \
  -H "Authorization: Key {api-key}" \
  -H "Content-Type: application/json" \
-d '
{
    "query": {
        "ands": [
            {
                "input":{
                    "data": {
                        "concepts": [
                            {
                                "name": "cat",
                                "value": 1
                            }
                        ]
                    }
                }
            },
            {
                "output": {
                    "data": {
                        "concepts": [
                            {
                                "name": "dog",
                                "value": 0
                            }
                        ]
                    }
                }
            }
        ]
    }
}'\
https://api.clarifai.com/v2/searches
PreviousLegacy SearchNextFilter

Last updated 3 years ago

Was this helpful?