Clarifai Guide
Clarifai Home
v7.11
v7.11
  • Welcome
  • Clarifai Basics
    • Start Here (5 mins or less!)
      • Your First AI Predictions (~1 min)
      • Your First Visual Search App (~1 min)
      • Your First Custom Model (~5 mins)
    • Key Terminology to Know
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Authorize
      • Personal Access Tokens
      • Scopes
      • 2FA
      • Roll-Based Access Control
    • Clarifai Community Quick Start
  • API Guide
    • Clarifai API Basics
      • Clarifai API Clients
        • gRPC vs HTTP Channels
      • Helpful API Resources
        • Using Postman with Clarifai APIs
    • Your Data
      • Datasets
        • Dataset Basics
        • Dataset Filters
        • Dataset Inputs
        • Dataset Versions
      • Supported Formats
      • Adding and Removing Data
      • Collectors
    • Making Predictions
      • Images
      • Video
      • Text
      • Prediction Parameters
      • Multilingual Classification
    • Creating and Managing Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Labeling Your Data
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Creating and Training Models
      • Clarifai Models
      • Model Types
      • Custom Models
      • Custom Text Model
      • Create, Get, Update, Delete
      • Deep Training
    • Evaluating Models
      • Interpreting Evaluations
      • Improving Your Model
    • Creating Workflows
      • Base Workflows
      • Input Nodes
      • Setting Up Mesh Workflows
      • Common Workflows
        • Workflow Predict
        • Auto Annotation
        • Custom KNN Face Classifier Workflow
        • Visual Text Recognition
    • Search, Sort, Filter and Save
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
    • Advanced Topics
      • Status Codes
      • Patching
      • Pagination
      • Batch Predict CSV on Custom Text Model
      • Document Processing
  • Portal Guide
    • Clarifai Portal Basics
    • Your Data
      • Supported Formats
      • Exploring Your Data
        • Predictions
        • Annotations
        • Bulk Labeling
        • Proposals
        • Object Tracking
      • Collectors
    • Making Predictions
    • Creating and Managing Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Labeling Your Data
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Creating and Training Models
      • Training Basics
      • Clarifai Models
      • Custom Models
      • Model Types
      • Deep Training
    • Evaluating Models
      • Interpreting Evaluations
      • Improving Your Model
    • Creating Workflows
      • Input Nodes
      • Workflow Builder
      • Base Workflows
      • Setting Up a Workflow
      • Common Workflows
        • Auto Annotation
        • Visual Text Recognition
        • Text Classification
    • Search, Sort, Filter and Save
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
      • Text Search
    • Advanced Topics
      • Importing Data with CSV and TSV Files
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 8.1
      • Release 8.0
      • Release 7.11
      • Release 7.10
      • Release 7.9
      • Release 7.8
      • Release 7.7
      • Release 7.6
      • Release 7.5
      • Release 7.4
      • Release 7.3
      • Release 7.2
      • Release 7.1
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
  • Additional Resources
    • API Status
    • Clarifai Blog
    • Clarifai Help
    • Clarifai Community
Powered by GitBook
On this page
  • Make text predictions via URL
  • Make text predictions on local text files

Was this helpful?

Edit on GitHub
  1. API Guide
  2. Making Predictions

Text

Make predictions on passages of text

Make text predictions via URL

You can make predictions on passages of text hosted on the web

# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        user_app_id=userDataObject,  # The userDataObject is created in the overview and is required when using a PAT
        model_id="{THE_MODEL_ID}",
        version_id="{THE_MODEL_VERSION_ID}",  # This is optional. Defaults to the latest model version.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    text=resources_pb2.Text(
                        base64=file_bytes
                    )
                )
            )
        ]
    ),
    metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    print("There was an error with your request!")
    print("\tCode: {}".format(post_model_outputs_response.outputs[0].status.code))
    print("\tDescription: {}".format(post_model_outputs_response.outputs[0].status.description))
    print("\tDetails: {}".format(respopost_model_outputs_responsense.outputs[0].status.details))
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
<?php
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

///////////////////////////////////////////////////////////////////////////////
// Specifying the Request Data
///////////////////////////////////////////////////////////////////////////////
//
// In the Clarifai platform a text is defined by a special Text object.
// There are several ways in which a Text object can be populated including
// by url and raw string.
//
$text = new Text([
    'url' => 'https://samples.clarifai.com/negative_sentence_12.txt'
]);

//
// After an Text object is created, a Data object is constructed around it.
// The Data object offers a container that contains additional text independent
// metadata.  In this particular use case, no other metadata is needed to be
// specified.
//
$data = new Data([
    'text' => $text
]);

//
// The Data object is then wrapped in an Input object in order to meet the
// API specification.  Additional fields are available to populate in the Input
// object, but for the purposes of this example we can send in just the
// Data object.
//
$input = new Input([
    'data' => $data
]);

///////////////////////////////////////////////////////////////////////////////
// Creating the request object 
///////////////////////////////////////////////////////////////////////////////
//
// Finally, the request object itself is created.  This object carries the request
// along with the request status and other metadata related to the request itself.
// In this example we populate:
//    - the `user_app_id` field with the UserAppIDSet constructed above
//    - the `model_id` field with the ID of the model we are referencing
//    - the `inputs` field with an array of input objects constructed above 
//
$request = new PostModelOutputsRequest([
    'user_app_id' => $userDataObject, // This is defined above
    'model_id' => 'aaa03c23b3724a16a56b629203edc62c',  // This is the ID of the publicly available General model.
    'inputs' => [$input]
]);

///////////////////////////////////////////////////////////////////////////////
// Making the RPC call
///////////////////////////////////////////////////////////////////////////////
//
// Once the request object is constructed, we can call the actual request to the
// Clarifai platform.  This uses the opened gRPC client channel to communicate the
// request and then wait for the response.
//
[$response, $status] = $client->PostModelOutputs(
    $request,
    $metadata
)->wait();

///////////////////////////////////////////////////////////////////////////////
// Handling the Response
///////////////////////////////////////////////////////////////////////////////
//
// The response is returned and the first thing we do is check the status of it.
// A successful response will have a status code of 0, otherwise there is some 
// reported error.
//
if ($status->code !== 0) throw new Exception("Error: {$status->details}");

//
// In addition to the RPC response status, there is a Clarifai API status that
// reports if the operationo was a success or failure (not just that the commuunication)
// was successful.
//
if ($response->getStatus()->getCode() != StatusCode::SUCCESS) {
    throw new Exception("Failure response: " . $response->getStatus()->getDescription() . " " .
        $response->getStatus()->getDetails());
}

//
// The output of a successful call can be used in many ways.  In this example,
// we loop through all of the predicted concepts and print them out along with
// their numerical prediction value (confidence).
//
echo "Predicted concepts:\n";
foreach ($response->getOutputs()[0]->getData()->getConcepts() as $concept) {
    echo $concept->getName() . ": " . number_format($concept->getValue(), 2) . "\n";
}
?>
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("{THE_MODEL_ID}")
        .setVersionId("{THE_MODEL_VERSION_ID")  // This is optional. Defaults to the latest model version.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setText(
                    Text.newBuilder().setUrl("https://samples.clarifai.com/negative_sentence_12.txt")
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelOutputs(
    {
        model_id: "{THE_MODEL_ID}",
        version_id: "{THE_MODEL_VERSION_ID}",  // This is optional. Defaults to the latest model version.
        inputs: [
            {data: {text: {url: "https://samples.clarifai.com/negative_sentence_12.txt"}}}
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
curl -X POST
    -H 'Authorization: Key YOUR_API_KEY'
    -H "Content-Type: application/json"
    -d '
    {
      "inputs": [
        {
          "data": {
            "text": {
              "url": "https://samples.clarifai.com/negative_sentence_12.txt"
            }
          }
        }
      ]
    }'
    https://api.clarifai.com/v2/models/{THE_MODEL_ID}/versions/{THE_MODEL_VERSION_ID}/outputs
const raw = JSON.stringify({
	"user_app_id": {
		"user_id": "{YOUR_USER_ID}",
		"app_id": "{YOUR_APP_ID}"
	},
  "inputs": [
    {
      "data": {
        "text": {
          "url": "https://samples.clarifai.com/negative_sentence_12.txt"
        }
      }
    }
  ]
});

const requestOptions = {
  method: 'POST',
  headers: {
    'Accept': 'application/json',
    'Authorization': 'Key {YOUR_PERSONAL_TOKEN}'
  },
  body: raw
};

// NOTE: MODEL_VERSION_ID is optional, you can also call prediction with the MODEL_ID only
// https://api.clarifai.com/v2/models/{YOUR_MODEL_ID}/outputs
// this will default to the latest version_id

fetch("https://api.clarifai.com/v2/models/{YOUR_MODEL_ID}/versions/{MODEL_VERSION_ID}/outputs", requestOptions)
  .then(response => response.text())
  .then(result => console.log(result))
  .catch(error => console.log('error', error));

Make text predictions on local text files

Make predictions based on local text files.

# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

with open("{YOUR_IMAGE_FILE_LOCATION}", "rb") as f:
    file_bytes = f.read()

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        user_app_id=userDataObject,  # The userDataObject is created in the overview and is required when using a PAT
        model_id="{THE_MODEL_ID}",
        version_id="{THE_MODEL_VERSION_ID}",  # This is optional. Defaults to the latest model version.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    text=resources_pb2.Text(
                        raw="Butchart Gardens contains over 900 varieties of plants."
                    )
                )
            )
        ]
    ),
    metadata=metadata
)

if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    print("There was an error with your request!")
    print("\tCode: {}".format(post_model_outputs_response.outputs[0].status.code))
    print("\tDescription: {}".format(post_model_outputs_response.outputs[0].status.description))
    print("\tDetails: {}".format(respopost_model_outputs_responsense.outputs[0].status.details))
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import com.google.protobuf.ByteString;
import java.io.File;
import java.nio.file.Files;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("{THE_MODEL_ID}")
        .setVersionId("{THE_MODEL_VERSION_ID")  // This is optional. Defaults to the latest model version.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setText(
                    Text.newBuilder()
                        .setRaw(ByteString.copyFrom(Files.readAllBytes(
                            new File("{YOUR_IMAGE_FILE_LOCATION}").toPath()
                        )))
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

const fs = require("fs");
const imageBytes = fs.readFileSync("{YOUR_IMAGE_FILE_LOCATION}");

stub.PostModelOutputs(
    {
        model_id: "{THE_MODEL_ID}",
        version_id: "{THE_MODEL_VERSION_ID}",  // This is optional. Defaults to the latest model version.
        inputs: [
            {data: {text: {raw: textFile}}}
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
// Smaller files (195 KB or less)

curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "text": {
            "raw": "'"$(raw /home/user/image.jpeg)"'"
          }
        }
      }
    ]
  }'\
  https://api.clarifai.com/v2/models/{THE_MODEL_ID}/outputs
const raw = JSON.stringify({
	"user_app_id": {
		"user_id": "{YOUR_USER_ID}",
		"app_id": "{YOUR_APP_ID}"
	},
  "inputs": [
    {
      "data": {
        "text": {
          "raw": "{YOUR_RAW_TEXT}"
        }
      }
    }
  ]
});

const requestOptions = {
  method: 'POST',
  headers: {
    'Accept': 'application/json',
    'Authorization': 'Key {YOUR_PERSONAL_TOKEN}'
  },
  body: raw
};

// NOTE: MODEL_VERSION_ID is optional, you can also call prediction with the MODEL_ID only
// https://api.clarifai.com/v2/models/{YOUR_MODEL_ID}/outputs
// this will default to the latest version_id

fetch("https://api.clarifai.com/v2/models/{YOUR_MODEL_ID}/versions/{MODEL_VERSION_ID}/outputs", requestOptions)
  .then(response => response.text())
  .then(result => console.log(result))
  .catch(error => console.log('error', error));
PreviousVideoNextPrediction Parameters

Last updated 3 years ago

Was this helpful?