Clarifai Guide
Clarifai Home
v5.10
v5.10
  • Introduction
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Base Workflows
      • Application Settings
    • Authentication
    • Glossary
  • API Guide
    • API overview
      • API technical references
      • Status codes
    • Data management
      • Supported formats
      • Inputs
      • Patching
      • Pagination
    • Annotate
      • Positive and negative annotations
    • Model
      • Clarifai Models
      • Custom model walkthrough
      • Create, get and update
      • Workflows
    • Predict
      • Images
      • Video
      • Prediction parameters
      • Multilingual classification
    • Search
      • Index images for search
      • Rank
      • Filter
      • Combine or negate
  • Portal Guide
    • Portal overview
    • Data management
    • Annotate
      • Positive and negative annotations
    • Model
      • Clarifai Models
      • Custom model walkthrough
      • Workflows
      • Evaluate
        • Interpreting evaluations
    • Predict
    • Search
      • Rank
      • Filter
      • Combine or negate
  • Product Updates
    • Upcoming API Changes
    • Change log
  • SDK Guide (depreciated)
    • Mobile
    • Android
Powered by GitBook
On this page
  • Select Concepts
  • Maximum Concepts
  • Minimum Prediction Value
  • By Model Version ID

Was this helpful?

Edit on GitHub
  1. API Guide
  2. Predict

Prediction parameters

PreviousVideoNextMultilingual classification

Last updated 5 years ago

Was this helpful?

You can set additional parameters to gain flexibility in the predict operation.

Select Concepts

By putting this additional parameter on your predict calls, you can receive predict value(s) for only the concepts that you want to. You can specify particular concepts by either their id and/or their name. The concept names and ids are case sensitive, and so, these must be exact matches.

To retrieve an entire list of concepts from a given model use the GET /v2/models/{model_id}/output_info endpoint. Check out the section for how to use with any of the API clients!

If you submit a request with not an exact match of the concept id or name, you will receive an invalid model argument error. However, if one or more matches while one or more do not, the API will respond with a Mixed Success.

app.models.predict(Clarifai.GENERAL_MODEL, 'https://samples.clarifai.com/metro-north.jpg', {
  selectConcepts: [
    {name: 'train'},
    {id: 'ai_6kTjGfF6'}
  ]
})
from clarifai.rest import ClarifaiApp, Concept
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('general-v1.3')

select_concept_list = [Concept(concept_name='train'), Concept(concept_id='ai_6kTjGfF6')]
model.predict_by_url(url='https://samples.clarifai.com/metro-north.jpg', select_concepts=select_concept_list)
client.predict(client.getDefaultModels().generalModel().id())
    .withInputs(ClarifaiInput.forImage("https://samples.clarifai.com/metro-north.jpg"))
    .selectConcepts(Concept.forID("dog"), Concept.forID("cat"))
    .executeSync();
using System.Collections.Generic;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.Predict<Concept>(
                    client.PublicModels.GeneralModel.ModelID,
                    new ClarifaiURLImage("https://samples.clarifai.com/metro-north.jpg"),
                    selectConcepts: new List<Concept>
                    {
                        new Concept(id: "", name: "dog"),
                        new Concept(id: "", name: "cat")
                    })
                .ExecuteAsync();
        }
    }
}
// Coming Soon
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Models\ModelType;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->predict(ModelType::concept(),
        $client->publicModels()->generalModel()->modelID(),
        new ClarifaiURLImage('https://samples.clarifai.com/metro-north.jpg'))
    ->withSelectConcepts([(new Concept(''))->withName('dog'), (new Concept(''))->withName('cat')])
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    $output = $response->get();

    echo "Predicted concepts:\n";

    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H 'authorization: Key YOUR_API_KEY' \
  -H 'content -type: application/json' \
  -d '{
  "inputs": [
    {
      "data": {
        "image": {
          "url": "https://samples.clarifai.com/metro-north.jpg"
        }
      }
    }
  ],
  "model": {
    "output_info": {
      "output_config": {
        "select_concepts": [
          {"name": "train"},
          {"id": "ai_6kTjGfF6"}
        ]
      }
    }
  }
}'\
https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/outputs
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "c8abf5cbe52746efa9df8a2319d49d0a",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2017-06-27T13:31:57.493797045Z",
      "model": {
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "name": "general-v1.3",
        "created_at": "2016-03-09T17:11:39.608845Z",
        "app_id": "main",
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept",
          "type_ext": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T01:19:12.147644Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "c613b3254da34382b2fca65365da7c49",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "value": 0.9989112,
            "app_id": "main"
          },
          {
            "id": "ai_6kTjGfF6",
            "name": "station",
            "value": 0.992573,
            "app_id": "main"
          }
        ]
      }
    }
  ]
}

Maximum Concepts

app.models.predict(Clarifai.GENERAL_MODEL, 'https://samples.clarifai.com/metro-north.jpg', { maxConcepts: 3 })
  .then(response => {
    // There was a successful response
  })
  .catch(error => {
    // There was an error
  });
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('general-v1.3')

model.predict_by_url(url='https://samples.clarifai.com/metro-north.jpg', max_concepts=3)
client.predict(client.getDefaultModels().generalModel().id())
    .withInputs(ClarifaiInput.forImage("https://samples.clarifai.com/metro-north.jpg"))
    .withMaxConcepts(3)
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.Predict<Concept>(
                    client.PublicModels.GeneralModel.ModelID,
                    new ClarifaiURLImage("https://samples.clarifai.com/metro-north.jpg"),
                    maxConcepts: 3)
                .ExecuteAsync();
        }
    }
}
//Coming soon
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Models\ModelType;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->predict(ModelType::concept(),
        $client->publicModels()->generalModel()->modelID(),
        new ClarifaiURLImage('https://samples.clarifai.com/metro-north.jpg'))
    ->withMaxConcepts(3)
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      }
    ],
    "model":{
      "output_info":{
        "output_config":{
          "max_concepts": 3
        }
      }
    }
  }'\
  https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/outputs
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "c8c400234b0d47df9084857df0d69efb",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2017-06-15T16:09:48.984389535Z",
      "model": {
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "name": "general-v1.3",
        "created_at": "2016-02-26T23:38:40.086101Z",
        "app_id": "main",
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept",
          "type_ext": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T00:58:55.915745Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "fd99d9e345f3495a8bd2802151d09efa",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "value": 0.9989112,
            "app_id": "main"
          },
          {
            "id": "ai_fvlBqXZR",
            "name": "railway",
            "value": 0.9975532,
            "app_id": "main"
          },
          {
            "id": "ai_Xxjc3MhT",
            "name": "transportation system",
            "value": 0.9959158,
            "app_id": "main"
          }
        ]
      }
    }
  ]
}

Minimum Prediction Value

This parameter lets you set a minimum probability threshold for the outputs you want to view for the Predict operation. For example if you want to see all concepts with a probability score of .90 or higher, this parameter will allow you to accomplish that. Also note that if you don't specify the number of max concepts, you will only see the top 20. If your result can contain more values you will have to increase the number of maximum concepts as well.

app.models.predict(Clarifai.GENERAL_MODEL, 'https://samples.clarifai.com/metro-north.jpg', { minValue: 0.97 })
  .then(response => {
    // There was a successful response
  })
  .catch(error => {
    // There was an error
  });
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_CLARIFAI_KEY')

model = app.models.get('general-v1.3')

model.predict_by_url(url='https://samples.clarifai.com/metro-north.jpg', min_value=0.97)
client.predict(client.getDefaultModels().generalModel().id())
    .withInputs(ClarifaiInput.forImage("https://samples.clarifai.com/metro-north.jpg"))
    .withMinValue(0.9)
    .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.Predict<Concept>(
                    client.PublicModels.GeneralModel.ModelID,
                    new ClarifaiURLImage("https://samples.clarifai.com/metro-north.jpg"),
                    minValue: 0.9M)
                .ExecuteAsync();
        }
    }
}
//Coming soon
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Models\ModelType;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->predict(ModelType::concept(),
        $client->publicModels()->generalModel()->modelID(),
        new ClarifaiURLImage('https://samples.clarifai.com/metro-north.jpg'))
    ->withMinValue(0.9)
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      }
    ],
    "model":{
      "output_info":{
        "output_config":{
          "min_value": 0.97
        }
      }
    }
  }'\
  https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/outputs
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "b2027bccf4964d03b062ce653cff85b6",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2017-06-15T20:22:05.841603659Z",
      "model": {
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "name": "general-v1.3",
        "created_at": "2016-02-26T23:38:40.086101Z",
        "app_id": "main",
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept",
          "type_ext": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T00:58:55.915745Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "f7640568d37f47fbba9d6fdc892ec64d",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "value": 0.9989112,
            "app_id": "main"
          },
          {
            "id": "ai_fvlBqXZR",
            "name": "railway",
            "value": 0.9975532,
            "app_id": "main"
          },
          {
            "id": "ai_Xxjc3MhT",
            "name": "transportation system",
            "value": 0.9959158,
            "app_id": "main"
          },
          {
            "id": "ai_6kTjGfF6",
            "name": "station",
            "value": 0.992573,
            "app_id": "main"
          },
          {
            "id": "ai_RRXLczch",
            "name": "locomotive",
            "value": 0.992556,
            "app_id": "main"
          },
          {
            "id": "ai_VRmbGVWh",
            "name": "travel",
            "value": 0.98789215,
            "app_id": "main"
          },
          {
            "id": "ai_SHNDcmJ3",
            "name": "subway system",
            "value": 0.9816359,
            "app_id": "main"
          },
          {
            "id": "ai_jlb9q33b",
            "name": "commuter",
            "value": 0.9712483,
            "app_id": "main"
          }
        ]
      }
    }
  ]
}

By Model Version ID

Every time you train a custom model, it creates a new model version. By specifying version id in your predict call, you can continue to predict on a previous version, for consistent prediction results. Clarifai also updates our pre-built models on a regular basis.

If you are looking for consistent results from your predict calls, use version id. If the model version id is not specified, predict will default to the most current model.

let app = new Clarifai.App({apiKey: 'YOUR_API_KEY'});

app.models.predict({id:'MODEL_ID', version:'MODEL_VERSION_ID'}, "https://samples.clarifai.com/metro-north.jpg").then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp
app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.models.get('YOUR_MODEL_ID')
model.model_version = 'YOUR_MODEL_VERSION_ID'

response = model.predict_by_url('https://samples.clarifai.com/metro-north.jpg')
ModelVersion modelVersion = client.getModelVersionByID("MODEL_ID", "MODEL_VERSION_ID")
        .executeSync()
        .get();

    client.predict("MODEL_ID")
        .withVersion(modelVersion)
        .withInputs(ClarifaiInput.forImage("https://samples.clarifai.com/metro-north.jpg"))
        .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;
using Clarifai.DTOs.Predictions;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

                 var response = await Client.Predict<Concept>(
                    "YOUR_MODEL_ID",
                    new ClarifaiURLImage("https://samples.clarifai.com/metro-north.jpg"),
                    modelVersionID: "MODEL_VERSION_ID")
                  .ExecuteAsync();
        }
    }
}
//Coming soon
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Models\ModelType;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->predict(ModelType::concept(), '{model_id}',
        new ClarifaiURLImage('https://samples.clarifai.com/puppy.jpeg'))
    ->withModelVersionID('MODEL_VERSION_ID')
    ->executeSync();

if ($response->isSuccessful()) {
    echo "Response is successful.\n";

    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      }
    ]
  }'\
  https://api.clarifai.com/v2/models/<model_id>/versions/<model_version_id>/outputs

Setting the max concepts parameter will customize how many concepts and their corresponding probability scores the predict endpoint will return. If not specified, the predict endpoint will return the top 20 concepts. You can currently set the max concepts parameter to any number in the range: [1-200]. If your use case requires more concepts, please contact .

Advanced Models
Support