Clarifai Guide
Clarifai Home
v5.10
v5.10
  • Introduction
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Base Workflows
      • Application Settings
    • Authentication
    • Glossary
  • API Guide
    • API overview
      • API technical references
      • Status codes
    • Data management
      • Supported formats
      • Inputs
      • Patching
      • Pagination
    • Annotate
      • Positive and negative annotations
    • Model
      • Clarifai Models
      • Custom model walkthrough
      • Create, get and update
      • Workflows
    • Predict
      • Images
      • Video
      • Prediction parameters
      • Multilingual classification
    • Search
      • Index images for search
      • Rank
      • Filter
      • Combine or negate
  • Portal Guide
    • Portal overview
    • Data management
    • Annotate
      • Positive and negative annotations
    • Model
      • Clarifai Models
      • Custom model walkthrough
      • Workflows
      • Evaluate
        • Interpreting evaluations
    • Predict
    • Search
      • Rank
      • Filter
      • Combine or negate
  • Product Updates
    • Upcoming API Changes
    • Change log
  • SDK Guide (depreciated)
    • Mobile
    • Android
Powered by GitBook
On this page
  • Via URL
  • Via bytes

Was this helpful?

Edit on GitHub
  1. API Guide
  2. Predict

Images

PreviousPredictNextVideo

Last updated 5 years ago

Was this helpful?

Via URL

To get predictions for an input, you need to supply an image and the model you'd like to get predictions from. You can supply an image either with a publicly accessible URL or by directly sending bytes. You can send up to 128 images in one API call. You specify the model you'd like to use with the {model-id} parameter.

Below is an example of how you would send image URLs and receive back predictions from the general model.

You can learn all about the different available later in the guide.

app.models.initModel({id: Clarifai.GENERAL_MODEL, version: "aa7f35c01e0642fda5cf400f543e7c40"})
      .then(generalModel => {
        return generalModel.predict("@@sampleTrain");
      })
      .then(response => {
        var concepts = response['outputs'][0]['data']['concepts']
      })
from clarifai.rest import ClarifaiApp

app = ClarifaiApp(api_key='YOUR_API_KEY')
model = app.public_models.general_model
response = model.predict_by_url('@@sampleTrain')
ConceptModel model = client.getDefaultModels().generalModel();
    ModelVersion modelVersion = model.getVersionByID("the-version").executeSync().get();

    ClarifaiResponse<List<ClarifaiOutput<Prediction>>> response = client.predict(model.id())
        .withInputs(ClarifaiInput.forImage("@@sampleTrain"))
        .withVersion("aa7f35c01e0642fda5cf400f543e7c40")
        .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var Client = new ClarifaiClient("YOUR_API_KEY");

             var response = await Client.Predict<Concept>(
                    Client.PublicModels.GeneralModel.ModelID,
                    new List<IClarifaiInput>
                    {
                        new ClarifaiURLImage("@@sampleTrain"),
                        new ClarifaiURLImage("the-url-2")
                    },
                    "aa7f35c01e0642fda5cf400f543e7c40")
                .ExecuteAsync();
        }
    }
}
ClarifaiImage *image = [[ClarifaiImage alloc] initWithURL:@"@@sampleTrain"];
[_app getModelByName:@"general-v1.3" completion:^(ClarifaiModel *model, NSError *error) {
    [model predictOnImages:@[image]
                completion:^(NSArray<ClarifaiSearchResult *> *outputs, NSError *error) {
                    NSLog(@"outputs: %@", outputs);
                }];
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$model = $client->publicModels()->generalModel();

$input = new ClarifaiURLImage("@@sampleTrain");
$response = $model->predict($input)
    ->withModelVersionID("aa7f35c01e0642fda5cf400f543e7c40")
    ->executeSync();

if ($response->isSuccessful()) {
    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST
    -H 'Authorization: Key YOUR_API_KEY'
    -H "Content-Type: application/json"
    -d '
    {
      "inputs": [
        {
          "data": {
            "image": {
              "url": "https://samples.clarifai.com/metro-north.jpg"
            }
          }
        }
      ]
    }'
    https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/versions/aa7f35c01e0642fda5cf400f543e7c40/outputs
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "ea68cac87c304b28a8046557062f34a0",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2016-11-22T16:50:25Z",
      "model": {
        "name": "general-v1.3",
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "created_at": "2016-03-09T17:11:39Z",
        "app_id": null,
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T01:19:12Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "ea68cac87c304b28a8046557062f34a0",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "app_id": null,
            "value": 0.9989112
          },
          {
            "id": "ai_fvlBqXZR",
            "name": "railway",
            "app_id": null,
            "value": 0.9975532
          },
          {
            "id": "ai_Xxjc3MhT",
            "name": "transportation system",
            "app_id": null,
            "value": 0.9959158
          },
          {
            "id": "ai_6kTjGfF6",
            "name": "station",
            "app_id": null,
            "value": 0.992573
          },
          {
            "id": "ai_RRXLczch",
            "name": "locomotive",
            "app_id": null,
            "value": 0.992556
          },
          {
            "id": "ai_VRmbGVWh",
            "name": "travel",
            "app_id": null,
            "value": 0.98789215
          },
          {
            "id": "ai_SHNDcmJ3",
            "name": "subway system",
            "app_id": null,
            "value": 0.9816359
          },
          {
            "id": "ai_jlb9q33b",
            "name": "commuter",
            "app_id": null,
            "value": 0.9712483
          },
          {
            "id": "ai_46lGZ4Gm",
            "name": "railroad track",
            "app_id": null,
            "value": 0.9690325
          },
          {
            "id": "ai_tr0MBp64",
            "name": "traffic",
            "app_id": null,
            "value": 0.9687052
          },
          {
            "id": "ai_l4WckcJN",
            "name": "blur",
            "app_id": null,
            "value": 0.9667078
          },
          {
            "id": "ai_2gkfMDsM",
            "name": "platform",
            "app_id": null,
            "value": 0.9624243
          },
          {
            "id": "ai_CpFBRWzD",
            "name": "urban",
            "app_id": null,
            "value": 0.960752
          },
          {
            "id": "ai_786Zr311",
            "name": "no person",
            "app_id": null,
            "value": 0.95864904
          },
          {
            "id": "ai_6lhccv44",
            "name": "business",
            "app_id": null,
            "value": 0.95720303
          },
          {
            "id": "ai_971KsJkn",
            "name": "track",
            "app_id": null,
            "value": 0.9494642
          },
          {
            "id": "ai_WBQfVV0p",
            "name": "city",
            "app_id": null,
            "value": 0.94089437
          },
          {
            "id": "ai_dSCKh8xv",
            "name": "fast",
            "app_id": null,
            "value": 0.9399334
          },
          {
            "id": "ai_TZ3C79C6",
            "name": "road",
            "app_id": null,
            "value": 0.93121606
          },
          {
            "id": "ai_VSVscs9k",
            "name": "terminal",
            "app_id": null,
            "value": 0.9230834
          }
        ]
      }
    }
  ]
}

Via bytes

Below is an example of how you would send the bytes of an image and receive back predictions from the general model.

app.models.predict(Clarifai.GENERAL_MODEL, {base64: "G7p3m95uAl..."}).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp

app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.public_models.general_model
response = model.predict_by_filename('/home/user/image.jpeg')
# You could also use model.predict_by_bytes or model.predict_by_base64
client.getDefaultModels().generalModel().predict()
    .withInputs(ClarifaiInput.forImage(new File("/home/user/image.jpeg")))
    .executeSync();
using System.IO;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.PublicModels.GeneralModel.Predict(
                    new ClarifaiFileImage(File.ReadAllBytes("/home/user/image.jpeg")))
                .ExecuteAsync();
        }
    }
}
UIImage *image = [UIImage imageNamed:@"dress.jpg"];
ClarifaiImage *clarifaiImage = [[ClarifaiImage alloc] initWithImage:image];
[_app getModelByName:@"general-v1.3" completion:^(ClarifaiModel *model, NSError *error) {
    [model predictOnImages:@[clarifaiImage]
                completion:^(NSArray<ClarifaiSearchResult *> *outputs, NSError *error) {
                    NSLog(@"outputs: %@", outputs);
                }];
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiFileImage;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->publicModels()->generalModel()->predict(
        new ClarifaiFileImage(file_get_contents('/home/user/image.jpeg')))
    ->executeSync();

if ($response->isSuccessful()) {
    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
// Smaller files (195 KB or less)

curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "base64": "'"$(base64 /home/user/image.jpeg)"'"
          }
        }
      }
    ]
  }'\
  https://api.clarifai.com/v2/models/{model-id}/outputs

// Larger Files (Greater than 195 KB)

curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d @- https://api.clarifai.com/v2/models/{model-id}/outputs << FILEIN
  {
    "inputs": [
      {
        "data": {
          "image": {
            "base64": "$(base64 /home/user/image.png)"
          }
        }
      }
    ]
  }
FILEIN
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "e1cf385843b94c6791bbd9f2654db5c0",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2016-11-22T16:59:23Z",
      "model": {
        "name": "general-v1.3",
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "created_at": "2016-03-09T17:11:39Z",
        "app_id": null,
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T01:19:12Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "e1cf385843b94c6791bbd9f2654db5c0",
        "data": {
          "image": {
            "url": "https://s3.amazonaws.com/clarifai-api/img/prod/b749af061d564b829fb816215f6dc832/e11c81745d6d42a78ef712236023df1c.jpeg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_l4WckcJN",
            "name": "blur",
            "app_id": null,
            "value": 0.9973569
          },
          {
            "id": "ai_786Zr311",
            "name": "no person",
            "app_id": null,
            "value": 0.98865616
          },
          {
            "id": "ai_JBPqff8z",
            "name": "art",
            "app_id": null,
            "value": 0.986006
          },
          {
            "id": "ai_5rD7vW4j",
            "name": "wallpaper",
            "app_id": null,
            "value": 0.9722556
          },
          {
            "id": "ai_sTjX6dqC",
            "name": "abstract",
            "app_id": null,
            "value": 0.96476805
          },
          {
            "id": "ai_Dm5GLXnB",
            "name": "illustration",
            "app_id": null,
            "value": 0.922542
          },
          {
            "id": "ai_5xjvC0Tj",
            "name": "background",
            "app_id": null,
            "value": 0.8775655
          },
          {
            "id": "ai_tBcWlsCp",
            "name": "nature",
            "app_id": null,
            "value": 0.87474406
          },
          {
            "id": "ai_rJGvwlP0",
            "name": "insubstantial",
            "app_id": null,
            "value": 0.8196385
          },
          {
            "id": "ai_2Bh4VMrb",
            "name": "artistic",
            "app_id": null,
            "value": 0.8142488
          },
          {
            "id": "ai_mKzmkKDG",
            "name": "Christmas",
            "app_id": null,
            "value": 0.7996079
          },
          {
            "id": "ai_RQccV41p",
            "name": "woman",
            "app_id": null,
            "value": 0.7955615
          },
          {
            "id": "ai_20SCBBZ0",
            "name": "vector",
            "app_id": null,
            "value": 0.7775099
          },
          {
            "id": "ai_4sJLn6nX",
            "name": "dark",
            "app_id": null,
            "value": 0.7715479
          },
          {
            "id": "ai_5Kp5FMJw",
            "name": "still life",
            "app_id": null,
            "value": 0.7657637
          },
          {
            "id": "ai_LM64MDHs",
            "name": "shining",
            "app_id": null,
            "value": 0.7542407
          },
          {
            "id": "ai_swtdphX8",
            "name": "love",
            "app_id": null,
            "value": 0.74926054
          },
          {
            "id": "ai_h45ZTxZl",
            "name": "square",
            "app_id": null,
            "value": 0.7449074
          },
          {
            "id": "ai_cMfj16kJ",
            "name": "design",
            "app_id": null,
            "value": 0.73926914
          },
          {
            "id": "ai_LxrzLJmf",
            "name": "bright",
            "app_id": null,
            "value": 0.73790145
          }
        ]
      }
    }
  ]
}
Clarifai Models