Clarifai Guide
Clarifai Home
v7.4
v7.4
  • Welcome
  • Clarifai Basics
    • Build your first Clarifai App
    • Key Terminology to Know
    • Applications
      • Create an Application
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Authorize
      • Personal Access Tokens
      • Scopes
      • 2FA
      • Roll-Based Access Control
  • API Guide
    • Clarifai API Basics
      • Clarifai API Clients
        • gRPC vs HTTP Channels
      • Helpful API Resources
        • Using Postman with Clarifai APIs
    • Your Data
      • Supported Formats
      • Adding and Removing Data
      • Collectors
    • Making Predictions
      • Images
      • Video
      • Text
      • Prediction Parameters
      • Multilingual Classification
    • Creating and Managing Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Labeling Your Data
      • Annotations
      • Training Data
      • Positive and Negative Annotations
      • Tasks
      • Task Annotations
    • Creating and Training Models
      • Clarifai Models
      • Model Types
      • Custom Models
      • Custom Text Model
      • Create, Get, Update, Delete
      • Deep Training
    • Evaluating Models
      • Interpreting Evaluations
      • Improving Your Model
    • Creating Workflows
      • Base Workflows
      • Input Nodes
      • Setting Up Mesh Workflows
      • Common Workflows
        • Workflow Predict
        • Auto Annotation
        • Custom KNN Face Classifier Workflow
        • Visual Text Recognition
    • Search, Sort, Filter and Save
      • Search Overview
      • Combine or Negate
      • Filter
      • Rank
      • Index Images for Search
      • Legacy Search
        • Combine or Negate
        • Filter
        • Rank
        • Saved Searches
    • Advanced Topics
      • Status Codes
      • Patching
      • Pagination
      • Batch Predict CSV on Custom Text Model
  • Portal Guide
    • Clarifai Portal Basics
    • Your Data
      • Supported Formats
      • Exploring Your Data
        • Predictions
        • Annotations
        • Bulk Labeling
        • Proposals
        • Object Tracking
      • Collectors
    • Making Predictions
    • Creating and Managing Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Labeling Your Data
      • Create a Task
      • Label Types
      • Labeling Tools
      • AI Assist
      • Workforce Management
      • Review
      • Training Data
      • Positive and Negative Annotations
    • Creating and Training Models
      • Training Basics
      • Clarifai Models
      • Custom Models
      • Model Types
      • Deep Training
    • Evaluating Models
      • Interpreting Evaluations
      • Improving Your Model
    • Creating Workflows
      • Input Nodes
      • Base Workflows
      • Setting Up a Workflow
      • Common Workflows
        • Auto Annotation
        • Visual Text Recognition
        • Text Classification
    • Search, Sort, Filter and Save
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
      • Visual Search
      • Text Search
    • Advanced Topics
      • Importing Data with CSV and TSV Files
  • Data Labeling Services
    • Scribe LabelForce
  • Product Updates
    • Upcoming API Changes
    • Changelog
      • Release 7.4
      • Release 7.3
      • Release 7.2
      • Release 7.1
      • Release 7.0
      • Release 6.11
      • Release 6.10
      • Release 6.9
      • Release 6.8
      • Release 6.7
      • Release 6.6
      • Release 6.5
      • Release 6.4
      • Release 6.3
      • Release 6.2
      • Release 6.1
      • Release 6.0
      • Release 5.11
      • Release 5.10
  • Additional Resources
    • API Status
    • Clarifai Blog
    • Clarifai Help
    • Clarifai Community
Powered by GitBook
On this page
  • Select Concepts
  • Maximum Concepts
  • Minimum Prediction Value
  • By Model Version ID

Was this helpful?

  1. API Guide
  2. Making Predictions

Prediction Parameters

Learn about model prediction parameters.

PreviousTextNextMultilingual Classification

Last updated 4 years ago

Was this helpful?

You can set additional parameters to gain flexibility in the predict operation.

Select Concepts

By putting this additional parameter on your predict calls, you can receive predict value(s) for only the concepts that you want to. You can specify particular concepts by either their id and/or their name. The concept names and ids are case sensitive, and so, these must be exact matches.

To retrieve an entire list of concepts from a given model use the GET /v2/models/{model_id}/output_info endpoint. Check out the section for how to use with any of the API clients!

If you submit a request with not an exact match of the concept id or name, you will receive an invalid model argument error. However, if one or more matches while one or more do not, the API will respond with a Mixed Success.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.StatusCode;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("aaa03c23b3724a16a56b629203edc62c")  // This is model ID of the clarifai/main General model.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .setModel(
            Model.newBuilder().setOutputInfo(
                OutputInfo.newBuilder().setOutputConfig(
                    OutputConfig.newBuilder()
                        // When selecting concepts, value is ignored, so no need to specify it.
                        .addSelectConcepts(Concept.newBuilder().setName("train"))
                        .addSelectConcepts(Concept.newBuilder().setId("ai_6kTjGfF6")
                        )
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelOutputs(
    {
        model_id: "aaa03c23b3724a16a56b629203edc62c",  // This is model ID of the clarifai/main General model.
        inputs: [
            {data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
        ],
        // When selecting concepts, value is ignored, so no need to specify it.
        model: {output_info: {output_config: {select_concepts: [{name: "train"}, {id: "ai_6kTjGfF6"}]}}}
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="aaa03c23b3724a16a56b629203edc62c",  # This is model ID of the clarifai/main General model.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="https://samples.clarifai.com/metro-north.jpg"
                    )
                )
            )
        ],
        model=resources_pb2.Model(
            output_info=resources_pb2.OutputInfo(
                output_config=resources_pb2.OutputConfig(
                    select_concepts=[
                        # When selecting concepts, value is ignored, so no need to specify it.
                        resources_pb2.Concept(name="train"),
                        resources_pb2.Concept(id="ai_6kTjGfF6")
                    ]
                )
            )
        )
    ),
    metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
curl -X POST \
  -H 'authorization: Key YOUR_API_KEY' \
  -H 'content -type: application/json' \
  -d '{
  "inputs": [
    {
      "data": {
        "image": {
          "url": "https://samples.clarifai.com/metro-north.jpg"
        }
      }
    }
  ],
  "model": {
    "output_info": {
      "output_config": {
        "select_concepts": [
          {"name": "train"},
          {"id": "ai_6kTjGfF6"}
        ]
      }
    }
  }
}'\
https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/outputs

# Above is model ID of the publicly available General model.
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "c8abf5cbe52746efa9df8a2319d49d0a",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2017-06-27T13:31:57.493797045Z",
      "model": {
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "name": "general-v1.3",
        "created_at": "2016-03-09T17:11:39.608845Z",
        "app_id": "main",
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept",
          "type_ext": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T01:19:12.147644Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "c613b3254da34382b2fca65365da7c49",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "value": 0.9989112,
            "app_id": "main"
          },
          {
            "id": "ai_6kTjGfF6",
            "name": "station",
            "value": 0.992573,
            "app_id": "main"
          }
        ]
      }
    }
  ]
}

Maximum Concepts

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("aaa03c23b3724a16a56b629203edc62c")  // This is model ID of the clarifai/main General model.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .setModel(
            Model.newBuilder().setOutputInfo(
                OutputInfo.newBuilder().setOutputConfig(
                    OutputConfig.newBuilder().setMaxConcepts(3)
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelOutputs(
    {
        model_id: "aaa03c23b3724a16a56b629203edc62c",  // This is model ID of the clarifai/main General model
        inputs: [
            {data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
        ],
        model: {output_info: {output_config: {max_concepts: 3}}}
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="aaa03c23b3724a16a56b629203edc62c",  # This is model ID of the clarifai/main General model.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="https://samples.clarifai.com/metro-north.jpg"
                    )
                )
            )
        ],
        model=resources_pb2.Model(
            output_info=resources_pb2.OutputInfo(
                output_config=resources_pb2.OutputConfig(
                    max_concepts=3
                )
            )
        )
    ),
    metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      }
    ],
    "model":{
      "output_info":{
        "output_config":{
          "max_concepts": 3
        }
      }
    }
  }'\
  https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/outputs
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "c8c400234b0d47df9084857df0d69efb",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2017-06-15T16:09:48.984389535Z",
      "model": {
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "name": "general-v1.3",
        "created_at": "2016-02-26T23:38:40.086101Z",
        "app_id": "main",
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept",
          "type_ext": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T00:58:55.915745Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "fd99d9e345f3495a8bd2802151d09efa",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "value": 0.9989112,
            "app_id": "main"
          },
          {
            "id": "ai_fvlBqXZR",
            "name": "railway",
            "value": 0.9975532,
            "app_id": "main"
          },
          {
            "id": "ai_Xxjc3MhT",
            "name": "transportation system",
            "value": 0.9959158,
            "app_id": "main"
          }
        ]
      }
    }
  ]
}

Minimum Prediction Value

This parameter lets you set a minimum probability threshold for the outputs you want to view for the Predict operation. For example if you want to see all concepts with a probability score of .90 or higher, this parameter will allow you to accomplish that. Also note that if you don't specify the number of max concepts, you will only see the top 20. If your result can contain more values you will have to increase the number of maximum concepts as well.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("aaa03c23b3724a16a56b629203edc62c")  // This is model ID of the clarifai/main General model.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .setModel(
            Model.newBuilder().setOutputInfo(
                OutputInfo.newBuilder().setOutputConfig(
                    OutputConfig.newBuilder().setMinValue(0.95f)
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelOutputs(
    {
        model_id: "aaa03c23b3724a16a56b629203edc62c",  // This is model ID of the clarifai/main General model
        inputs: [
            {data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
        ],
        model: {output_info: {output_config: {min_value: 0.95}}}
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="aaa03c23b3724a16a56b629203edc62c",  # This is model ID of the clarifai/main General model.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="https://samples.clarifai.com/metro-north.jpg"
                    )
                )
            )
        ],
        model=resources_pb2.Model(
            output_info=resources_pb2.OutputInfo(
                output_config=resources_pb2.OutputConfig(
                    min_value=0.95
                )
            )
        )
    ),
    metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      }
    ],
    "model":{
      "output_info":{
        "output_config":{
          "min_value": 0.95
        }
      }
    }
  }'\
  https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/outputs
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "b2027bccf4964d03b062ce653cff85b6",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2017-06-15T20:22:05.841603659Z",
      "model": {
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "name": "general-v1.3",
        "created_at": "2016-02-26T23:38:40.086101Z",
        "app_id": "main",
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept",
          "type_ext": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T00:58:55.915745Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "f7640568d37f47fbba9d6fdc892ec64d",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "value": 0.9989112,
            "app_id": "main"
          },
          {
            "id": "ai_fvlBqXZR",
            "name": "railway",
            "value": 0.9975532,
            "app_id": "main"
          },
          {
            "id": "ai_Xxjc3MhT",
            "name": "transportation system",
            "value": 0.9959158,
            "app_id": "main"
          },
          {
            "id": "ai_6kTjGfF6",
            "name": "station",
            "value": 0.992573,
            "app_id": "main"
          },
          {
            "id": "ai_RRXLczch",
            "name": "locomotive",
            "value": 0.992556,
            "app_id": "main"
          },
          {
            "id": "ai_VRmbGVWh",
            "name": "travel",
            "value": 0.98789215,
            "app_id": "main"
          },
          {
            "id": "ai_SHNDcmJ3",
            "name": "subway system",
            "value": 0.9816359,
            "app_id": "main"
          },
          {
            "id": "ai_jlb9q33b",
            "name": "commuter",
            "value": 0.9712483,
            "app_id": "main"
          }
        ]
      }
    }
  ]
}

By Model Version ID

Every time you train a custom model, it creates a new model version. By specifying version id in your predict call, you can continue to predict on a previous version, for consistent prediction results. Clarifai also updates our pre-built models on a regular basis.

If you are looking for consistent results from your predict calls, use version id. If the model version id is not specified, predict will default to the most current model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("aaa03c23b3724a16a56b629203edc62c")  // This is model ID of the clarifai/main General model.
        .setVersionId("aa7f35c01e0642fda5cf400f543e7c40")  // This is optional. Defaults to the latest model version.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

stub.PostModelOutputs(
    {
        model_id: "aaa03c23b3724a16a56b629203edc62c",  // This is model ID of the clarifai/main General model
        version_id: "aa7f35c01e0642fda5cf400f543e7c40",  // This is optional. Defaults to the latest model version.
        inputs: [
            {data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
        ],
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="aaa03c23b3724a16a56b629203edc62c",  # This is model ID of the clarifai/main General model.
        version_id="aa7f35c01e0642fda5cf400f543e7c40",  # This is optional. Defaults to the latest model version.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="https://samples.clarifai.com/metro-north.jpg"
                    )
                )
            )
        ]
    ),
    metadata=metadata
)

if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("\t%s %.2f" % (concept.name, concept.value))
curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      }
    ]
  }'\
  https://api.clarifai.com/v2/models/aaa03c23b3724a16a56b629203edc62c/versions/aa7f35c01e0642fda5cf400f543e7c40/outputs

# Above is model ID of the publicly available General model.
# Version ID is optional. It defaults to the latest model version.

Setting the max concepts parameter will customize how many concepts and their corresponding probability scores the predict endpoint will return. If not specified, the predict endpoint will return the top 20 concepts. You can currently set the max concepts parameter to any number in the range: [1-200]. If your use case requires more concepts, please contact .

Advanced Models
Support