Create, Get, Update, Delete

Create Model

To create a model, you need to specify the model's name and other required fields (which depend on the model). Specifying the ID is optional.

Below, we create a classifier model with one initial concept. You can always add and remove concepts later.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse postModelsResponse = stub.postModels(
    PostModelsRequest.newBuilder().addModels(
        Model.newBuilder()
            .setId("petsID")
            .setOutputInfo(
                OutputInfo.newBuilder().setData(
                    Data.newBuilder().addConcepts(Concept.newBuilder().setId("boscoe"))
                )
            )
    ).build()
);

if (postModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Post models failed, status: " + postModelsResponse.getStatus());

Add Concepts To A Model

You can add concepts to a model at any point. As you add concepts to inputs, you may want to add them to your model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

...

MultiModelResponse patchModelsResponse = stub.patchModels(
    PatchModelsRequest.newBuilder()
        .setAction("merge")  // Supported actions: overwrite, merge, remove
        .addModels(
            Model.newBuilder()
                .setId("petsID")
                .setOutputInfo(
                    OutputInfo.newBuilder().setData(
                        Data.newBuilder().addConcepts(Concept.newBuilder().setId("charlie"))
                    )
                )
        )
        .build()
);

if (patchModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Patch models failed, status: " + patchModelsResponse.getStatus());
}

Remove Concepts From A Model

Conversely, if you'd like to remove concepts from a model, you can also do that.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse patchModelsResponse = stub.patchModels(
    PatchModelsRequest.newBuilder()
        .setAction("remove")  // Supported actions: overwrite, merge, remove
        .addModels(
            Model.newBuilder()
                .setId("petsID")
                .setOutputInfo(
                    OutputInfo.newBuilder().setData(
                        Data.newBuilder().addConcepts(Concept.newBuilder().setId("charlie"))
                    )
                )
        )
        .build()
);

if (patchModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Patch models failed, status: " + patchModelsResponse.getStatus());
}

Update Model Name and Configuration

Here we will change the model name to 'newname' and the model's configuration to have concepts_mutually_exclusive=true and closed_environment=true.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse patchModelsResponse = stub.patchModels(
    PatchModelsRequest.newBuilder()
        .setAction("overwrite")
        .addModels(
            Model.newBuilder()
                .setId("petsID")
                .setName("newname")
                .setOutputInfo(
                    OutputInfo.newBuilder()
                        .setData(
                            Data.newBuilder()
                                .addConcepts(Concept.newBuilder().setId("birds"))
                                .addConcepts(Concept.newBuilder().setId("hurd"))
                        )
                        .setOutputConfig(
                            OutputConfig.newBuilder()
                                .setConceptsMutuallyExclusive(true)
                                .setClosedEnvironment(true)
                        )
                )
    ).build()
);

if (patchModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Patch models failed, status: " + patchModelsResponse.getStatus());
}

Get

List Model Types

Learn about available model types and their hyperparameters. This endpoint lists all the possible models that are creatable (when creatable=true), or in general in the platform (the others ones have creatable=false).

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelTypeResponse listModelTypesResponse = stub.listModelTypes(ListModelTypesRequest.newBuilder().build());

for (ModelType modelType : listModelTypesResponse.getModelTypesList()) {
    System.out.println(modelType);
}

Get Models

To get a list of all models including models you've created as well as Clarifai models:

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse listModelsResponse = stub.listModels(
    ListModelsRequest.newBuilder().build()
);

if (listModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List models failed, status: " + listModelsResponse.getStatus());
}

List<Model> models = listModelsResponse.getModelsList();
for (Model model : models) {
    System.out.println(model);
}

Get Model By Id

All models have unique Ids. You can get a specific model by its id:

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse getModelResponse = stub.getModel(
    GetModelRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (getModelResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Get model failed, status: " + getModelResponse.getStatus());
}

Model model = getModelResponse.getModel();
System.out.println(model);

Get Model Output Info By Id

The output info of a model lists what concepts it contains.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse getModelOutputInfoResponse = stub.getModelOutputInfo(
    GetModelRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (getModelOutputInfoResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Get model output info failed, status: " + getModelOutputInfoResponse.getStatus());
}

Model model = getModelOutputInfoResponse.getModel();
System.out.println(model);

List Model Versions

Every time you train a model, it creates a new version. You can list all the versions created.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelVersionResponse listModelVersionsResponse = stub.listModelVersions(
    ListModelVersionsRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (listModelVersionsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List model versions failed, status: " + listModelVersionsResponse.getStatus());
}

List<ModelVersion> modelVersions = listModelVersionsResponse.getModelVersionsList();
for (ModelVersion modelVersion : modelVersions) {
    System.out.println(modelVersion);
}

Get Model Version By Id

To get a specific model version, you must provide the model_id as well as the version_id. You can inspect the model version status to determine if your model is trained or still training.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions


SingleModelVersionResponse getModelVersionResponse = stub.getModelVersion(
    GetModelVersionRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")
        .build()
);

if (getModelVersionResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Get model version failed, status: " + getModelVersionResponse.getStatus());
}

ModelVersion modelVersion = getModelVersionResponse.getModelVersion();
System.out.println(modelVersion);

Get Model Training Inputs

You can list all the inputs that were used to train the model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiInputResponse listModelInputsResponse = stub.listModelInputs(
    ListModelInputsRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (listModelInputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List model inputs failed, status: " + listModelInputsResponse.getStatus());
}

List<Input> inputs = listModelInputsResponse.getInputsList();
for (Input input : inputs) {
    System.out.println(input);
}

Get Model Training Inputs By Version

You can also list all the inputs that were used to train a specific model version.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiInputResponse listModelInputsResponse = stub.listModelInputs(
    ListModelInputsRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")
        .build()
);

if (listModelInputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("List model inputs failed, status: " + listModelInputsResponse.getStatus());
}

List<Input> inputs = listModelInputsResponse.getInputsList();
for (Input input : inputs) {
    System.out.println(input);
}

Delete A Model

You can delete a model using the model_id.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

BaseResponse deleteModelResponse = stub.deleteModel(
    DeleteModelRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (deleteModelResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Delete model failed, status: " + deleteModelResponse.getStatus());
}

Delete A Model Version

You can also delete a specific version of a model with the model_id and version_id.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

BaseResponse deleteModelVersionResponse = stub.deleteModelVersion(
    DeleteModelVersionRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")
        .build()
);

if (deleteModelVersionResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Delete model version failed, status: " + deleteModelVersionResponse.getStatus());
}

Delete All Models

If you would like to delete all models associated with an application, you can also do that. Please proceed with caution as these cannot be recovered.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

BaseResponse deleteModelsResponse = stub.deleteModels(
    DeleteModelsRequest.newBuilder()
        .setDeleteAll(true)
        .build()
);

if (deleteModelsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Delete models failed, status: " + deleteModelsResponse.getStatus());
}

Train A Model

When you train a model, you are telling the system to look at all the images with concepts you've provided and learn from them. This train operation is asynchronous. It may take a few seconds for your model to be fully trained and ready.

Note: you can repeat this operation as often as you like. By adding more images with concepts and training, you can get the model to predict exactly how you want it to.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

SingleModelResponse postModelVersionsResponse = stub.postModelVersions(
    PostModelVersionsRequest.newBuilder()
        .setModelId("petsID")
        .build()
);

if (postModelVersionsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model versions failed, status: " + postModelVersionsResponse.getStatus());
}

String modelVersionId = postModelVersionsResponse.getModel().getModelVersion().getId();
System.out.println("New model version ID: " + modelVersionId);

Predict With A Model

Once you have trained a model you are ready to use your new model to get predictions. The predictions returned will only contain the concepts that you told it to see.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("petsID")
        .setVersionId("{YOUR_MODEL_VERSION_ID}")  // Optional. Defaults to the latest version.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}

Search Models By Name And Type

You can search all your models by name and type of model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import java.util.List;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview/api-clients#client-installation-instructions

MultiModelResponse postModelsSearchesResponse = stub.postModelsSearches(
    PostModelsSearchesRequest.newBuilder()
        .setModelQuery(
            ModelQuery.newBuilder()
                .setName("gen*")
                .setType("concept")
        )
        .build()
);

if (postModelsSearchesResponse.getStatus().getCode() != StatusCode.SUCCESS) {
    throw new RuntimeException("Post models searches failed, status: " + postModelsSearchesResponse.getStatus());
}

List<Model> models = postModelsSearchesResponse.getModelsList();
for (Model model : models) {
    System.out.println(model);
}

Last updated