Clarifai Guide
Clarifai Home
v6.3
v6.3
  • Introduction
  • Getting Started
    • Quick Start
    • Applications
      • Create an Application
      • Base Workflows
      • Application Settings
      • Collaboration
    • Authentication
      • App-Specific API Keys
      • Personal Access Tokens
      • Scopes
      • Authorize
    • Glossary
  • API Guide
    • API overview
      • API Clients
      • API Technical References
      • Status Codes
      • Pagination
      • Patching
    • Inputs
      • Create, Get, Update, Delete
      • Supported Formats
    • Concepts
      • Create, Get, Update
      • Languages
      • Search by Concept
      • Knowledge Graph
    • Annotations
      • Annotations
      • Positive and Negative Annotations
    • Model
      • Clarifai Models
      • Create, Get, Update, Delete
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
    • Workflows
      • Create, Get, Update, Delete
      • Input Nodes
      • Workflow Predict
    • Predict
      • Images
      • Video
      • Prediction Parameters
      • Multilingual Classification
    • Search
      • Index Images for Search
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
    • Walkthroughs
      • Custom Models
      • Auto Annotation
  • Portal Guide
    • Portal Overview
    • Inputs
    • Concepts
      • Create, Get, Update, Delete
      • Knowledge Graph
      • Languages
    • Annotate
      • Positive and Negative Annotations
    • Model
      • Clarifai Models
      • Deep Training
      • Evaluate
        • Interpreting Evaluations
    • Workflows
      • Input Nodes
    • Predict
    • Search
      • Rank
      • Filter
      • Combine or Negate
      • Saved Searches
    • Walkthroughs
      • Custom Models
      • Auto Annotation
  • Product Updates
    • Upcoming API Changes
    • Changelog
Powered by GitBook
On this page
  • Via URL
  • Via bytes

Was this helpful?

  1. API Guide
  2. Predict

Images

PreviousPredictNextVideo

Last updated 4 years ago

Was this helpful?

Via URL

To get predictions for an input, you need to supply an image and the model you'd like to get predictions from. You can supply an image either with a publicly accessible URL or by directly sending bytes. You can send up to 128 images in one API call. You specify the model you'd like to use with the {model-id} parameter.

Below is an example of how you would send image URLs and receive back predictions from the general model.

You can learn all about the different available later in the guide.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("{THE_MODEL_ID}")
        .setVersionId("{THE_MODEL_VERSION_ID")  // This is optional. Defaults to the latest model version.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("https://samples.clarifai.com/metro-north.jpg")
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview

stub.PostModelOutputs(
    {
        model_id: "{THE_MODEL_ID}",
        version_id: "{THE_MODEL_VERSION_ID}",  // This is optional. Defaults to the latest model version.
        inputs: [
            {data: {image: {url: "https://samples.clarifai.com/metro-north.jpg"}}}
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
from clarifai_grpc.grpc.api import service_pb2, resources_pb2
from clarifai_grpc.grpc.api.status import status_code_pb2

# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="{THE_MODEL_ID}",
        version_id="{THE_MODEL_VERSION_ID}",  # This is optional. Defaults to the latest model version.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        url="https://samples.clarifai.com/metro-north.jpg"
                    )
                )
            )
        ]
    ),
    metadata=metadata
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
app.models.initModel({id: Clarifai.GENERAL_MODEL, version: "aa7f35c01e0642fda5cf400f543e7c40"})
      .then(generalModel => {
        return generalModel.predict("@@sampleTrain");
      })
      .then(response => {
        var concepts = response['outputs'][0]['data']['concepts']
      })
from clarifai.rest import ClarifaiApp

app = ClarifaiApp(api_key='YOUR_API_KEY')
model = app.public_models.general_model
response = model.predict_by_url('@@sampleTrain')
ConceptModel model = client.getDefaultModels().generalModel();
    ModelVersion modelVersion = model.getVersionByID("the-version").executeSync().get();

    ClarifaiResponse<List<ClarifaiOutput<Prediction>>> response = client.predict(model.id())
        .withInputs(ClarifaiInput.forImage("@@sampleTrain"))
        .withVersion("aa7f35c01e0642fda5cf400f543e7c40")
        .executeSync();
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var Client = new ClarifaiClient("YOUR_API_KEY");

             var response = await Client.Predict<Concept>(
                    Client.PublicModels.GeneralModel.ModelID,
                    new List<IClarifaiInput>
                    {
                        new ClarifaiURLImage("@@sampleTrain"),
                        new ClarifaiURLImage("the-url-2")
                    },
                    "aa7f35c01e0642fda5cf400f543e7c40")
                .ExecuteAsync();
        }
    }
}
ClarifaiImage *image = [[ClarifaiImage alloc] initWithURL:@"@@sampleTrain"];
[_app getModelByName:@"general-v1.3" completion:^(ClarifaiModel *model, NSError *error) {
    [model predictOnImages:@[image]
                completion:^(NSArray<ClarifaiSearchResult *> *outputs, NSError *error) {
                    NSLog(@"outputs: %@", outputs);
                }];
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiURLImage;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$model = $client->publicModels()->generalModel();

$input = new ClarifaiURLImage("@@sampleTrain");
$response = $model->predict($input)
    ->withModelVersionID("aa7f35c01e0642fda5cf400f543e7c40")
    ->executeSync();

if ($response->isSuccessful()) {
    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
curl -X POST
    -H 'Authorization: Key YOUR_API_KEY'
    -H "Content-Type: application/json"
    -d '
    {
      "inputs": [
        {
          "data": {
            "image": {
              "url": "https://samples.clarifai.com/metro-north.jpg"
            }
          }
        }
      ]
    }'
    https://api.clarifai.com/v2/models/{THE_MODEL_ID}/versions/{THE_MODEL_VERSION_ID}/outputs
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "ea68cac87c304b28a8046557062f34a0",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2016-11-22T16:50:25Z",
      "model": {
        "name": "general-v1.3",
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "created_at": "2016-03-09T17:11:39Z",
        "app_id": null,
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T01:19:12Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "ea68cac87c304b28a8046557062f34a0",
        "data": {
          "image": {
            "url": "https://samples.clarifai.com/metro-north.jpg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_HLmqFqBf",
            "name": "train",
            "app_id": null,
            "value": 0.9989112
          },
          {
            "id": "ai_fvlBqXZR",
            "name": "railway",
            "app_id": null,
            "value": 0.9975532
          },
          {
            "id": "ai_Xxjc3MhT",
            "name": "transportation system",
            "app_id": null,
            "value": 0.9959158
          },
          {
            "id": "ai_6kTjGfF6",
            "name": "station",
            "app_id": null,
            "value": 0.992573
          },
          {
            "id": "ai_RRXLczch",
            "name": "locomotive",
            "app_id": null,
            "value": 0.992556
          },
          {
            "id": "ai_VRmbGVWh",
            "name": "travel",
            "app_id": null,
            "value": 0.98789215
          },
          {
            "id": "ai_SHNDcmJ3",
            "name": "subway system",
            "app_id": null,
            "value": 0.9816359
          },
          {
            "id": "ai_jlb9q33b",
            "name": "commuter",
            "app_id": null,
            "value": 0.9712483
          },
          {
            "id": "ai_46lGZ4Gm",
            "name": "railroad track",
            "app_id": null,
            "value": 0.9690325
          },
          {
            "id": "ai_tr0MBp64",
            "name": "traffic",
            "app_id": null,
            "value": 0.9687052
          },
          {
            "id": "ai_l4WckcJN",
            "name": "blur",
            "app_id": null,
            "value": 0.9667078
          },
          {
            "id": "ai_2gkfMDsM",
            "name": "platform",
            "app_id": null,
            "value": 0.9624243
          },
          {
            "id": "ai_CpFBRWzD",
            "name": "urban",
            "app_id": null,
            "value": 0.960752
          },
          {
            "id": "ai_786Zr311",
            "name": "no person",
            "app_id": null,
            "value": 0.95864904
          },
          {
            "id": "ai_6lhccv44",
            "name": "business",
            "app_id": null,
            "value": 0.95720303
          },
          {
            "id": "ai_971KsJkn",
            "name": "track",
            "app_id": null,
            "value": 0.9494642
          },
          {
            "id": "ai_WBQfVV0p",
            "name": "city",
            "app_id": null,
            "value": 0.94089437
          },
          {
            "id": "ai_dSCKh8xv",
            "name": "fast",
            "app_id": null,
            "value": 0.9399334
          },
          {
            "id": "ai_TZ3C79C6",
            "name": "road",
            "app_id": null,
            "value": 0.93121606
          },
          {
            "id": "ai_VSVscs9k",
            "name": "terminal",
            "app_id": null,
            "value": 0.9230834
          }
        ]
      }
    }
  ]
}

Via bytes

Below is an example of how you would send the bytes of an image and receive back predictions from the general model.

import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.*;
import com.google.protobuf.ByteString;
import java.io.File;
import java.nio.file.Files;

// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview

MultiOutputResponse postModelOutputsResponse = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("{THE_MODEL_ID}")
        .setVersionId("{THE_MODEL_VERSION_ID")  // This is optional. Defaults to the latest model version.
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder()
                        .setBase64(ByteString.copyFrom(Files.readAllBytes(
                            new File("{YOUR_IMAGE_FILE_LOCATION}").toPath()
                        )))
                )
            )
        )
        .build()
);

if (postModelOutputsResponse.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Post model outputs failed, status: " + postModelOutputsResponse.getStatus());
}

// Since we have one input, one output will exist here.
Output output = postModelOutputsResponse.getOutputs(0);

System.out.println("Predicted concepts:");
for (Concept concept : output.getData().getConceptsList()) {
    System.out.printf("%s %.2f%n", concept.getName(), concept.getValue());
}
// Insert here the initialization code as outlined on this page:
// https://docs.clarifai.com/api-guide/api-overview

const fs = require("fs");
const imageBytes = fs.readFileSync("{YOUR_IMAGE_FILE_LOCATION}");

stub.PostModelOutputs(
    {
        model_id: "{THE_MODEL_ID}",
        version_id: "{THE_MODEL_VERSION_ID}",  // This is optional. Defaults to the latest model version.
        inputs: [
            {data: {image: {base64: imageBytes}}}
        ]
    },
    metadata,
    (err, response) => {
        if (err) {
            throw new Error(err);
        }

        if (response.status.code !== 10000) {
            throw new Error("Post model outputs failed, status: " + response.status.description);
        }

        // Since we have one input, one output will exist here.
        const output = response.outputs[0];

        console.log("Predicted concepts:");
        for (const concept of output.data.concepts) {
            console.log(concept.name + " " + concept.value);
        }
    }
);
from clarifai_grpc.grpc.api import service_pb2, resources_pb2
from clarifai_grpc.grpc.api.status import status_code_pb2

# Insert here the initialization code as outlined on this page:
# https://docs.clarifai.com/api-guide/api-overview

with open("{YOUR_IMAGE_FILE_LOCATION}", "rb") as f:
    file_bytes = f.read()

post_model_outputs_response = stub.PostModelOutputs(
    service_pb2.PostModelOutputsRequest(
        model_id="{THE_MODEL_ID}",
        version_id="{THE_MODEL_VERSION_ID}",  # This is optional. Defaults to the latest model version.
        inputs=[
            resources_pb2.Input(
                data=resources_pb2.Data(
                    image=resources_pb2.Image(
                        base64=file_bytes
                    )
                )
            )
        ]
    ),
    metadata=metadata
)

if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
    raise Exception("Post model outputs failed, status: " + post_model_outputs_response.status.description)

# Since we have one input, one output will exist here.
output = post_model_outputs_response.outputs[0]

print("Predicted concepts:")
for concept in output.data.concepts:
    print("%s %.2f" % (concept.name, concept.value))
app.models.predict(Clarifai.GENERAL_MODEL, {base64: "G7p3m95uAl..."}).then(
  function(response) {
    // do something with response
  },
  function(err) {
    // there was an error
  }
);
from clarifai.rest import ClarifaiApp

app = ClarifaiApp(api_key='YOUR_API_KEY')

model = app.public_models.general_model
response = model.predict_by_filename('/home/user/image.jpeg')
# You could also use model.predict_by_bytes or model.predict_by_base64
client.getDefaultModels().generalModel().predict()
    .withInputs(ClarifaiInput.forImage(new File("/home/user/image.jpeg")))
    .executeSync();
using System.IO;
using System.Threading.Tasks;
using Clarifai.API;
using Clarifai.DTOs.Inputs;

namespace YourNamespace
{
    public class YourClassName
    {
        public static async Task Main()
        {
            var client = new ClarifaiClient("YOUR_API_KEY");

            await client.PublicModels.GeneralModel.Predict(
                    new ClarifaiFileImage(File.ReadAllBytes("/home/user/image.jpeg")))
                .ExecuteAsync();
        }
    }
}
UIImage *image = [UIImage imageNamed:@"dress.jpg"];
ClarifaiImage *clarifaiImage = [[ClarifaiImage alloc] initWithImage:image];
[_app getModelByName:@"general-v1.3" completion:^(ClarifaiModel *model, NSError *error) {
    [model predictOnImages:@[clarifaiImage]
                completion:^(NSArray<ClarifaiSearchResult *> *outputs, NSError *error) {
                    NSLog(@"outputs: %@", outputs);
                }];
}];
use Clarifai\API\ClarifaiClient;
use Clarifai\DTOs\Inputs\ClarifaiFileImage;
use Clarifai\DTOs\Outputs\ClarifaiOutput;
use Clarifai\DTOs\Predictions\Concept;

$client = new ClarifaiClient('YOUR_API_KEY');

$response = $client->publicModels()->generalModel()->predict(
        new ClarifaiFileImage(file_get_contents('/home/user/image.jpeg')))
    ->executeSync();

if ($response->isSuccessful()) {
    /** @var ClarifaiOutput $output */
    $output = $response->get();

    echo "Predicted concepts:\n";
    /** @var Concept $concept */
    foreach ($output->data() as $concept) {
        echo $concept->name() . ': ' . $concept->value() . "\n";
    }
} else {
    echo "Response is not successful. Reason: \n";
    echo $response->status()->description() . "\n";
    echo $response->status()->errorDetails() . "\n";
    echo "Status code: " . $response->status()->statusCode();
}
// Smaller files (195 KB or less)

curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d '
  {
    "inputs": [
      {
        "data": {
          "image": {
            "base64": "'"$(base64 /home/user/image.jpeg)"'"
          }
        }
      }
    ]
  }'\
  https://api.clarifai.com/v2/models/{THE_MODEL_ID}/outputs

// Larger Files (Greater than 195 KB)

curl -X POST \
  -H "Authorization: Key YOUR_API_KEY" \
  -H "Content-Type: application/json" \
  -d @- https://api.clarifai.com/v2/models/{model-id}/outputs << FILEIN
  {
    "inputs": [
      {
        "data": {
          "image": {
            "base64": "$(base64 /home/user/image.png)"
          }
        }
      }
    ]
  }
FILEIN
{
  "status": {
    "code": 10000,
    "description": "Ok"
  },
  "outputs": [
    {
      "id": "e1cf385843b94c6791bbd9f2654db5c0",
      "status": {
        "code": 10000,
        "description": "Ok"
      },
      "created_at": "2016-11-22T16:59:23Z",
      "model": {
        "name": "general-v1.3",
        "id": "aaa03c23b3724a16a56b629203edc62c",
        "created_at": "2016-03-09T17:11:39Z",
        "app_id": null,
        "output_info": {
          "message": "Show output_info with: GET /models/{model_id}/output_info",
          "type": "concept"
        },
        "model_version": {
          "id": "aa9ca48295b37401f8af92ad1af0d91d",
          "created_at": "2016-07-13T01:19:12Z",
          "status": {
            "code": 21100,
            "description": "Model trained successfully"
          }
        }
      },
      "input": {
        "id": "e1cf385843b94c6791bbd9f2654db5c0",
        "data": {
          "image": {
            "url": "https://s3.amazonaws.com/clarifai-api/img/prod/b749af061d564b829fb816215f6dc832/e11c81745d6d42a78ef712236023df1c.jpeg"
          }
        }
      },
      "data": {
        "concepts": [
          {
            "id": "ai_l4WckcJN",
            "name": "blur",
            "app_id": null,
            "value": 0.9973569
          },
          {
            "id": "ai_786Zr311",
            "name": "no person",
            "app_id": null,
            "value": 0.98865616
          },
          {
            "id": "ai_JBPqff8z",
            "name": "art",
            "app_id": null,
            "value": 0.986006
          },
          {
            "id": "ai_5rD7vW4j",
            "name": "wallpaper",
            "app_id": null,
            "value": 0.9722556
          },
          {
            "id": "ai_sTjX6dqC",
            "name": "abstract",
            "app_id": null,
            "value": 0.96476805
          },
          {
            "id": "ai_Dm5GLXnB",
            "name": "illustration",
            "app_id": null,
            "value": 0.922542
          },
          {
            "id": "ai_5xjvC0Tj",
            "name": "background",
            "app_id": null,
            "value": 0.8775655
          },
          {
            "id": "ai_tBcWlsCp",
            "name": "nature",
            "app_id": null,
            "value": 0.87474406
          },
          {
            "id": "ai_rJGvwlP0",
            "name": "insubstantial",
            "app_id": null,
            "value": 0.8196385
          },
          {
            "id": "ai_2Bh4VMrb",
            "name": "artistic",
            "app_id": null,
            "value": 0.8142488
          },
          {
            "id": "ai_mKzmkKDG",
            "name": "Christmas",
            "app_id": null,
            "value": 0.7996079
          },
          {
            "id": "ai_RQccV41p",
            "name": "woman",
            "app_id": null,
            "value": 0.7955615
          },
          {
            "id": "ai_20SCBBZ0",
            "name": "vector",
            "app_id": null,
            "value": 0.7775099
          },
          {
            "id": "ai_4sJLn6nX",
            "name": "dark",
            "app_id": null,
            "value": 0.7715479
          },
          {
            "id": "ai_5Kp5FMJw",
            "name": "still life",
            "app_id": null,
            "value": 0.7657637
          },
          {
            "id": "ai_LM64MDHs",
            "name": "shining",
            "app_id": null,
            "value": 0.7542407
          },
          {
            "id": "ai_swtdphX8",
            "name": "love",
            "app_id": null,
            "value": 0.74926054
          },
          {
            "id": "ai_h45ZTxZl",
            "name": "square",
            "app_id": null,
            "value": 0.7449074
          },
          {
            "id": "ai_cMfj16kJ",
            "name": "design",
            "app_id": null,
            "value": 0.73926914
          },
          {
            "id": "ai_LxrzLJmf",
            "name": "bright",
            "app_id": null,
            "value": 0.73790145
          }
        ]
      }
    }
  ]
}
Clarifai Models